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Abstract—Graphics Processing Units (GPUs) are widely de-
ployed and utilized across various computing domains including
cloud and high-performance computing. Considering its extensive
usage and increasing popularity, ensuring GPU reliability is cru-
cial. Software-based reliability evaluation methodologies, though
fast, often neglect the complex hardware details of modern GPU
designs. This oversight could lead to misleading measurements
and misguided decisions regarding protection strategies. This
paper breaks new ground by conducting an in-depth examination
of well-established vulnerability assessment methods for modern
GPU architectures, from the microarchitecture all the way to
the software layers. It highlights divergences between popular
software-based vulnerability evaluation methods and the ground
truth cross-layer evaluation, which persist even under strong
protections like triple modular redundancy. Accurate evaluation
requires considering fault distribution from hardware to soft-
ware. Our comprehensive measurements offer valuable insights
into the accurate assessment of GPU reliability.

Index Terms—reliability assessment, GPUs, fault injection

I. INTRODUCTION

Rapid developments in silicon manufacturing have enabled
increased performance and improved energy efficiency of
current graphics processing units (GPUs) [1]. Nowadays,
GPUs are extensively employed in pre-exascale supercom-
puters for their highly parallel computation throughput to ac-
celerate high-performance computing (HPC) applications [2],
[3], which often have strict reliability requirements. The long
execution time of these HPC applications also increases the
probability of encountering soft errors (hardware transient
faults) [3]–[6] that can result in faulty outputs or crashes.
Ensuring the reliability of these applications is even more
challenging under the growing prevalence of soft errors in
advanced manufacturing technologies [7]. The ever-increasing
rate of soft errors in newer manufacturing technologies can
jeopardize the aggressive evolution of GPUs, which brings
additional challenges. For example, since GPU applications are
written using the Single-Instruction-Multiple-Threads (SIMT)
paradigm, a single transient fault in a bit-cell of a hardware
structure can result in multiple data corruptions at the appli-
cation output [8] or a thread affected by a fault may supply
several subsequent parallel threads with corrupted data [9].

Assessing the impact of soft errors on GPU workloads at
the early (unprotected) GPU design phase is important for
unveiling potentially vulnerable hardware areas that need to be
protected. Reliability assessment of a computing system can be

realized using different techniques which vary in their design
maturity and granularity, the level of accuracy, and the speed
of the assessment process [10]. Simulation is a very widely
employed method for the assessment of the vulnerability to
soft errors, long before the product becomes available to users.
GPU reliability evaluations are often performed on models
of the actual GPU design using simulators [11]–[16]. Highly
detailed and accurate simulation models at the RTL (Register
Transfer Level), gate, or transistor level are extremely slow, not
scalable, and not feasible. Less detailed models, for example at
the microarchitecture level (using cycle-level simulators), are
much faster than low-level highly detailed models. Higher-
level ISA (Instruction Set Architecture) simulation models,
although faster, are even more abstract (hardware-agnostic).
Inaccurate reliability assessments can lead to pitfalls and
wrong design decisions, finally resulting in more vulnerabili-
ties [17], [18].

Assessing the Architectural Vulnerability Factor (AVF) [19]
of each microarchitectural structure of a chip during end-to-
end program execution is a comprehensive way to evaluate
the vulnerability of the entire system stack to soft errors, from
the microarchitecture to the software layers [17]. AVF is the
probability that a soft error (e.g., a bit flip) may produce an
observable error at the application output. While AVF has
been initially proposed for the assessment of reliability in
CPUs, it has also been naturally adapted to GPUs [20]–[22].
Typically, application resilience is measured by experimental
campaigns based on statistical fault injection (FI) [23] or
using analytical methods, such as the Architecturally Correct
Execution (ACE) analysis [19]. AVF measurements based on
statistical fault injection provide useful and accurate insights
for the application reliability profile but come with a lim-
itation: since AVF measurements are based on cycle-level,
microarchitecture-detailed simulation, obtaining the AVF of a
GPU program is very slow [24].

Software-based vulnerability estimation methods, assuming
software-visible origins of hardware bit flips, are significantly
faster than full-system hardware measurements, which con-
sider all hardware bits [12]–[14], [25]. The speed difference
can be two orders of magnitude or more1. These software-

1For example, the AVF experiments of this study require 1,258 single-
core machine days, compared to the 10 machine days used for the SVF
experiments.



level methods derive the Software Vulnerability Factor (SVF,
as it is defined in [17]), representing the probability of a fault
affecting program execution in a single dynamic instruction.
They are commonly used under the assumption that (a) rea-
sonably model the effect of soft errors on the software layer
(i.e., the overall resilience) and (b) at least provide correct
relative vulnerability comparisons among different workloads.
This work challenges these assumptions and demonstrates that
neither stands for GPU reliability assessment.

In this paper, we present an unbiased comparison of GPGPU
reliability evaluation at different layers. To the best of our
knowledge, this is the first study that such a cross-layer
analysis has been performed in the GPU domain. We quantify
and explain the diverging estimation results obtained when
assessing the reliability of GPUs at different abstraction layers,
specifically at the microarchitecture and the software layers.
The contributions of this work are summarized as follows:

• We demonstrate the magnitude of measurement errors in-
troduced by software-level reliability evaluation methods,
compared to the ground-truth, cross-layer AVF analysis.
To this end, we employ two state-of-the-art, open-source
fault injection frameworks that both focus on NVIDIA
GPUs: gpuFI-4 [11], [26] and NVBitFI [25], [27], which
operate at the microarchitecture level and at the software
level, respectively.

• We conduct a case study to measure the effectiveness of a
strong software-based protection method, Triple Modular
Redundancy (TMR) [28], which aims to eliminate silent
data corruptions (SDCs) [29]–[31]. Our case study reveals
two major insights: 1) although software-level evaluation
(i.e., SVF) confirms that SDCs are effectively eliminated,
the cross-layer evaluation (i.e., AVF) shows that some
SDCs still remain despite the heavy penalty of protection
in terms of performance (and thus, energy consump-
tion [29], [32]–[34]), and 2) while most of the SDCs
are eliminated, Detected Unrecoverable Errors (DUEs)
instead increase, resulting frequently in higher vulnera-
bility of the heavily protected application compared to
the unprotected one.

• We provide insights and reasoning about the sources of
assessment error of software-level methods, which even-
tually lead to diverging results, and explain the reasons
that lead to such discrepancies.

II. EXPERIMENTAL SETUP

In this study, we employ two open-source fault injection
frameworks: gpuFI-4 [11] for microarchitecture-level assess-
ment and NVBitFI [25] for software-level assessment. To
ensure fairness, we carefully select closely matched GPUs
from gpuFI-4 and NVBitFI-supported sets: Quadro GV100 for
microarchitecture-level and Tesla V100 for software-level fault
injection. Both GPUs, based on NVIDIA Volta microarchitec-
ture, exhibit highly similar configurations for the considered
structures—register files, shared memory, L1 data and texture
caches, and L2 caches—meeting the essential criteria for an
equitable comparison.

A. Fault Model

We focus on a single-bit flip fault model for our evaluation,
anticipating similar outcomes with multi-bit flips. Physical
experiments of accelerated beam testing [35] establish that
on-chip storage arrays can suffer from multi-bit flips in ad-
jacent areas. In other words, even if a multi-bit flip occurs,
the corruption could not occur at two different instruction
locations, different threads, or different structures at the same
time. Recent studies have shown that this probability is highly
proportional to the number of bit flips [36], and single-bit
flips contribute the most to the total vulnerability compared to
multi-bit faults [36], [37]. Therefore, we do not expect multi-
bit fault occurrences to change our observations. Most of the
on-chip memory structures are protected through error correc-
tion codes (ECC), but with overhead. There are several new
proposals for alternative protection schemes aiming at lower
performance penalties and/or power consumption [38]–[41].
Reliability evaluation in the early design phases is necessary
to decide on the most appropriate protection technique for a
new design. Starting with an unprotected GPU design, we aim
to gauge the inherent vulnerability of each on-chip structure
to inform targeted protection strategies.

Aligned with prior works [17], [37], [42], our experimental
approach utilizes statistical fault injection [23]. Each exper-
iment involves injecting a single-bit fault at a random (i.e.,
uniformly distributed) location. We iterate this process 3,000
times to provide results with 99% confidence intervals and an
error margin of approximately ±2.35% [16], [23], [43]. We
classify the effect on the program output into the following
fault effect classes (typically used in fault injection studies):

• Masked outcome happens when the fault does not affect
the system or the application in any observable way.

• Silent Data Corruption (SDC) occurs when an application
completes its execution, yet the output differs from that
of the fault-free run.

• Timeout occurs when the application does not finish
within a certain amount of time.

• Detected unrecoverable errors (DUEs) occurs when the
execution does not complete because a catastrophic event
disturbs it. No output is produced, and it may refer to a
kernel or application crash.

B. Microarchitecture-Level Fault Injection

For microarchitecture-level fault injection, we employ
the open-source framework gpuFI-4 [11], a state-of-the-art
microarchitecture-level reliability assessment framework built
on top of the recent GPGPU-Sim 4.0 simulator [44]. We
inject faults in the five hardware structures that are supported
by gpuFI-4: register files (RF), shared memory (SMEM), L1
data caches (L1D), L1 texture caches (L1T), and L2 caches.
For a fair comparison between cross-layer and software-level
evaluation methods, we do not consider faults in the L1
instruction cache, since software-level fault injection tools do
not consider faults that affect any bit of the instruction format
(see details in subsection II-C).
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gpuFI-4 provides the cross-layer AVF (Architectural Vul-
nerability Factor), defined as the probability of a fault in a
hardware structure that would result in an error (i.e., the fault
is not masked) [19]. In AVF analysis, any bit at the microar-
chitecture level can be flipped, no matter if it is currently
valid (i.e., alive) or not. We follow the well-established AVF
methodology to calculate the AVF [17], [19] and describe the
detailed calculation below.

We define, as the failure rate (FR) of a hardware structure
h, the probability of all non-masked faults:

FR(h) = Pct(SDC ) + Pct(Timeout) + Pct(DUE )

where Pct(x) denotes the percentage of component x.
GPGPU-Sim 4.0 simulator does not have a real register file

hardware structure as a reference, but it dynamically allocates
each register of a thread during the execution (and frees them
when a thread finishes). Even if the total number of used
registers is known from the beginning, it is not possible to
inject a fault against the entire register file, i.e., currently used
and unused registers, but only to the registers that are active at
a specific cycle. Therefore, to accurately calculate the correct
probability (i.e., AVF), which depends on the total number of
registers (i.e., the entire population of bits, including currently
used and unused bits), we weight the AVF as if we were
targeting the entire register file. The same logic applies to
the shared memory, with the difference that this memory is
allocated per CTA and not per thread.

To overcome this inherent issue of the simulator, in our
register file and shared memory analysis, we define a derating
factor (DF) of a hardware structure h as follows:

DF (h) =
size per thread(h)× num threads

system size(h)

The derating factor is only for register files and shared
memory, as these two components have the previously dis-
cussed simulator issue. DF does not apply to other hardware
components like L1 data/texture caches and L2 caches. By
using the failure rate (FR) and corresponding derating factor
(DF) of each hardware structure h, we can accurately calculate
the cross-layer AVF of that structure:

AVF (h) = FR(h)×DF (h)

For a fair comparison between microarchitecture and
software-level resilience analysis (see subsection II-C), we
need to calculate the full AVF of the entire chip, i.e., the
consolidated AVF of all hardware structures. To this end, we
compute the accurate full GPU chip AVF by weighting all
the hardware structures h1, h2, ..., hn by their actual sizes (bit
counts), which is a well-established process for accurately
delivering the AVF of the entire chip [17]:

AVF (all) = Σn
i=1[AVF (hi)×

size(hi)

Σn
j=1size(hj)

]

For multi-kernel applications (of different execution times),
we first assess the AVF of each kernel separately by injecting
faults into each target kernel only. The AVF of the entire

application is calculated by weighting the kernel AVF by its
number of cycles to reflect its duration:

AVF (app) = Σk
i=1[AVF (keri)× num cycles(keri )

Σk
j=1num cycles(kerj )

]

C. Software-Level Fault Injection

For the software-level fault injection part of this study, we
employ the open-source framework NVBitFI [25]. NVBitFI
is a state-of-the-art software-level fault injector, officially
supported by NVIDIA. It is built on top of NVBit (NVIDIA
Binary Instrumentation Tool) [45], which is a dynamic binary
instrumentation library built for recent NVIDIA GPUs. NVBit
enables the instrumentation of SASS instructions of kernel
functions in GPU applications. Because of the nature of the
software-level fault injection, faults are only injected into
valid (i.e., alive) data. This is exactly how the software-
level fault injection measurements are naturally performed,
and we follow the same process as it is implemented in
NVBitFI tool. NVBitFI provides the Software Vulnerability
Factor (SVF). We define the SVF metric as the probability of a
fault in a single dynamic instruction that would affect program
execution, following its initial definition [17]. SVF expresses
the vulnerability factor of faults whose origin is at a software-
visible location (i.e., a flipped bit in the destination register)
and not a flipped hardware bit at the microarchitecture level.
SVF is microarchitecture-independent, in contrast to AVF.

NVBitFI injects faults into the destination registers of
executed instructions, thus there is no need to consider any
derating factor. The SVF of a kernel can be calculated from
the probability of all non-masked faults:

SVF (ker) = FR(ker)

= Pct(SDC ) + Pct(timeout) + Pct(DUE )

For applications with multiple kernels, we first assess the
SVF of each kernel separately by injecting faults into the target
kernel. For computing the SVF of the entire application, we
weight the kernel SVF with its number of executed instruc-
tions, since we assume a uniform fault distribution across time:

SVF (app) = Σk
i=1[SVF (keri)× num instructions(keri )

Σk
j=1num instructions(kerj )

]

D. Benchmarks

We carefully select 11 benchmarks (23 kernels) from two
very widely used benchmark suites CUDA [46] and Ro-
dinia [47] in reliability studies [15], [48], [49], covering
a wide range of applications, especially HPC applications,
including image processing, data mining, graph algorithms,
linear algebra, bioinformatics, and physics simulations. The
variety of these benchmarks eliminates the bias of program-
ming factors such as instruction types and counts, which may
affect application resilience.

III. COMPARISON OF AVF AND SVF

In this section, we present a detailed comparison between
the AVF (i.e., the cross-layer vulnerability) and the SVF (i.e.,
the software-only, hardware-agnostic vulnerability evaluation)
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that unveils the magnitude of estimation error that SVF de-
livers. Our experimental results include an application-wise
comparison and a kernel-wise comparison between AVF and
SVF. We profile diverse performance measurements and show
that resource utilization can be used as an indicator of some
trends. Furthermore, we consider the comparison of other
sub-metrics of AVF and SVF, such as AVF-RF (Register
File) and SVF, and AVF-Cache and SVF-LD (which is the
SVF calculated through injections in Load instructions only).
Through these specific comparisons, we bring up awareness
of inconsistencies across reliability assessment methodologies
and showcase the importance of bridging this cross-layer gap.

A. Comparison between AVF and SVF (Application-wise)

Figure 1 shows the AVF and SVF results of applications
studied in this work. Please note the different scales of the
vertical axis between the AVF and the SVF graphs: full-
system vulnerability absolute values (the bottom graph of
Figure 1) are always much smaller than the software-only
vulnerability ones (the top graph of Figure 1) because they
also consider the full hardware masking effects. Since AVF
and SVF assume different origins of faults (for the AVF the
origin is any microarchitectural bit; for SVF it is a bit of
the destination register of a dynamic instruction), there is no
direct comparison of absolute vulnerabilities. The focus here
is the relative trends (i.e., the vulnerability ranking of two
individual applications) and not the comparison of the actual
vulnerabilities. This method is in line with other research
works in the literature [17].

The differences between AVF and SVF in Figure 1 are
dramatic. Trends in SVF and AVF occasionally align and
sometimes diverge. In certain cases, SVF and AVF produce
entirely contrasting vulnerability estimations, impacting both
the overall vulnerability and the severity of specific fault effect
classes. We start our discussion with consistent trends. For
instance, in Figure 1, consider the pairings of SRADv1 and
SRADv2 benchmarks (first two bars) as well as the K-Means
and HotSpot benchmarks (third and fourth bars). Both SVF
and AVF consistently show that K-Means exhibits notably
lower vulnerability compared to HotSpot, just as SRADv1
demonstrates greater reliability than SRADv2. This pattern
remains consistent across all three fault effect classes: SDC,
timeout, and DUE.

However, there are many pairs of benchmarks that show
opposite vulnerability trends between SVF and AVF analysis.
Consider the pair of HotSpot and LUD benchmarks (fourth
and fifth bars in both graphs of Figure 1). From the cross-layer
AVF point of view, LUD is more resilient than HotSpot, while
based on SVF, LUD is significantly less resilient than HotSpot.
As another example, for the pair of SCP and VA benchmarks,
similar observations occur: SVF shows that SCP is more
resilient than VA, while the ground-truth AVF shows the exact
opposite trend. Moreover, the vulnerability trend of the SDC
fault effect is also different between the cross-layer AVF and
software-layer SVF. LUD exhibits significant vulnerabilities
considering SDC when measuring SVF (i.e., the SDC proba-
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Fig. 1. Application-level comparison: AVF (bottom) and SVF (top).

bility based on SVF is 74.47%), but from the AVF analysis, the
SDC rate is extremely low. This observation is very important,
since such diverging SVF evaluations may lead designers to
decide and apply a wrong protection scheme in practice. For
example, budgeted protection, or sometimes called partial pro-
tection, is a common practice given the expensive cost of pro-
tection overhead [41], [50]. The idea is simple, to protect only
the most vulnerable components (e.g., applications, kernels,
threads, or instructions) in the system. From the SVF analysis,
clearly, high protection priority should be given to LUD and
VA. However, based on AVF, the most vulnerable applications
are SRADv2, HotSpot, and SCP. Therefore, software designers
may decide to protect an application (e.g., the most vulnerable
application, LUD) against SDCs (which typically occur due
to faults in computations and the data flow) by applying
a software fortification method [41], [51]. However, since
AVF shows that the SDC rate is extremely low, protecting
this application from SDCs is unnecessary and the resources
are wasted. Even worse, a wrong-decided protection scheme
can increase the vulnerability of the application, instead of
decreasing it. section IV shows several cases in which wrong-
applied protection increases the software vulnerability rather
than decreases it.

Overall, there are 32 pairs (i.e., 58%) of applications with
consistent trends between AVF and SVF and 23 pairs (i.e.,
42%) of applications showing opposite trends between AVF
and SVF (see the first row of Table I). Explanations of these
trends are presented in subsection III-C.

TABLE I
OPPOSITE TRENDS IN APPLICATION OR KERNEL PAIRS.

Consistent Trend Opposite Trend
Application-Level 32 (58%) 23 (42%)

Kernel-Level 144 (57%) 109 (43%)
AVF-RF vs. SVF 32 (58%) 23 (42%)

AVF-Cache vs. SVF-LD 23 (42%) 32 (58%)

B. Comparison between AVF and SVF (Kernel-wise)

Since GPGPU application kernels normally implement in-
dependent modules/functions, we also conduct a kernel-wise
AVF and SVF comparison for a comprehensive analysis, see
Figure 2. Similar to application-wise comparisons, both con-
sistent and opposite vulnerability trends exist at the individual
kernel level. For example, K1 and K2 of BackProp show
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Fig. 2. Kernel-level AVF (bottom) and SVF (top).

consistent trends between AVF and SVF; PathFinder K1 and
BackProp K1 also show consistent trends. An example of
opposite vulnerability trends is HotSpot K1 and LUD K1:
considering AVF, HotSpot K1 is more vulnerable, but based
on SVF, HotSpot K1 is significantly less vulnerable than
LUD K1. Overall, there are 144 pairs of kernels showing
consistent trends and 109 pairs of kernels with opposite trends
(see second row of Table I).

Opposite vulnerability trends between AVF and SVF not
only occur between different kernels of different applications
but also between different kernels of the same application. For
example, for the kernels of SRADv1 shown in Figure 2, AVF
analysis shows that SRADv1 K4 is the most vulnerable kernel,
while according to SVF, SRADv1 K1 is the most vulnerable
one. Another example is LUD in Figure 2. While the AVF
shows that LUD K3 is the most vulnerable kernel, the SVF
shows that the most vulnerable is LUD K2.

Insight #1: Software and microarchitecture level reliability
assessment methods deliver inconsistent relative vulnerabili-
ties of the studied applications and kernels. This observation
points to the need for exploration of the relationship of
application resilience among these layers.

C. Resource Utilization: An Indicator

In this section, we present a correlation of vulnerability
trends to diverse performance metrics collected by GPGPU-
Sim 4.0 [44] during fault-free executions and show that
resource utilization serves as an indicator for some resilience
trends. Such metrics include (among others) the register file
usage, the cache usage, and the total number of instructions.
Due to space constraints, we present those metrics that are
closely related and contribute the most to the major differences
between AVF and SVF. For a fair comparison, each metric is
normalized by the sum of the values of the certain metric of
two kernels:

Norm.Value(Ker 1 ) =
Value(Ker 1 )

Value(Ker 1 ) +Value(Ker 2 )

Norm.Value(Ker 2 ) =
Value(Ker 2 )

Value(Ker 1 ) +Value(Ker 2 )
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(a) Opposite trend: HotSpot K1 has much higher resource utilization.
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Fig. 3. AVF, SVF, and performance measurements for each application.

The result value of 50% means that the values of a certain
metric (e.g., AVF or SVF) of two kernels are the same. In
Figure 3a, the left-most bar shows that the AVF of HotSpot
K1 is much higher than LUD K1, but the second left bar
(SVF) shows that LUD K1 has a higher SVF, which shows
opposite trends between AVF and SVF. Considering other
metrics related to resource usage (as shown in the remaining
bars of the graph), for most of the metrics, HotSpot K1 has
higher resource utilization, indicating that faults injected at the
microarchitecture level have a higher chance to propagate to
the software level. This observation explains in part the reason
for this opposite trend.

Another example considering kernels with consistent trends
is shown in Figure 3b. Both AVF and SVF show that LUD
K2 is more vulnerable than LUD K1, which suggests that
the algorithm and the implementation of LUD K1 are more
resilient. In most cases, LUD K2 provides higher resource
utilization (i.e., the white-colored portion of bars is larger than
the blue-colored portion), therefore both its AVF and SVF are
higher than LUD K1.

Most of the applications and application kernels exhibit
similar behaviors, but resource utilization cannot be used
directly as a proxy. Figure 3c shows another example of
opposite trends, but without no clear conclusion of higher or
lower resource utilization. In section V we analyze in detail
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the sources of assessment errors that contribute to incorrect
SVF estimation and conclude that only cross-layer evaluation
methods can provide the correct application resilience.

Although resource utilization does not directly determine
the relationship between AVF and SVF, it serves as an effec-
tive indicator for resilience trends. In cases where a kernel
demonstrates lower SVF and decreased resource utilization,
its AVF also tends to be lower (as illustrated in Figure 3b).
This correlation holds across all 40 kernel pairs exhibiting both
reduced SVF and resource usage. This is reasonable because
1) lower SVF indicates higher fault tolerance at the application
level; 2) lower utilization suggests a lower probability of faults
propagating from hardware to software layers due to a reduced
chance of faults occurring in invalid (not alive) data.

Insight #2: Resource utilization of an application or a kernel
serves as an indicator for some trends. However, it is unlikely
to determine the precise relationship and inconsistencies
between AVF and SVF solely through simple resource usage
calculations.

D. AVF of Major Hardware Structures and Sub-Comparisons

Software-level fault injection methods only consider faults
at a currently used register, i.e., a bit flip occurs in the value
of an instruction. Here, to explain the sources of assessment
error of the high number of diverging results of SVF, we
present fine-grained comparisons: 1) between the AVF of the
register file only (i.e., labeled AVF-RF) and the SVF and 2)
between the AVF of the on-chip memory structures only (i.e.,
labeled AVF-cache) and the SVF of memory operations (i.e.,
labeled SVF-LD and referring to bit flips only to the loaded
values from memory). This allows us to compare as close as
possible the AVF and SVF by considering the same group
of corruptions and not the entire AVF and SVF results. The
diverging trends of these comparisons practically render SVF
and software-layer measurements incorrect, given that AVF
delivers the ground truth measurement.

1) AVF-RF vs. SVF: The comparison of AVF-RF and SVF
is shown in Figure 4 (see also the third row of Table I).
There are 32 consistent trends and 23 opposite trends across
all application pairs. The same number of opposite trends were
also observed earlier in Figure 12. It is clearly shown that even
if the comparison between AVF and SVF occurs only in the
register files, SVF remains a misleading measure of application
resilience. The main reason is attributed to the distribution of
faults in both measurements. On the one hand, AVF considers
faults in any currently valid or not valid (i.e., alive or not
alive) entry/datum of a hardware structure, which is the ground
truth, since a high-energy particle may affect any (valid or not)
hardware entry. On the other hand, SVF only considers fault
in a certain (alive) value in a register of a dynamic instruction.

2The relative trends of AVF and AVF-RF are the same, because register files
occupy the largest size in our fault and architecture model, i.e., the register
file affects the most the overall AVF due to its size.
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Insight #3: The distribution of faults is of paramount impor-
tance since it can significantly affect the overall estimation
and guide the final resilience assessment. SVF may lead to
diverging reliability measurement results because only the
software-level masking effect is evaluated.

2) AVF-Cache vs. SVF-LD: For the AVF-Cache experi-
ments we consider the L1 data caches, the L1 texture caches,
and L2 caches. Faults in these hardware components are
related to faults on memory operations that are visible (and
thus, accessible for fault injection) at the software level. By
injecting faults into load instructions, we can obtain memory-
related SVF (i.e., SVF-LD). Figure 5 shows the comparison
between AVF-Cache and SVF-LD. For memory-related op-
erations, AVF and SVF become more erratic compared to
the register file-only comparisons. 58% of the total pairs of
benchmarks (see also the fourth line of Table I) result in
opposite vulnerability trends.

Insight #4: Sub-metrics of AVF and SVF still exhibit
consistent and opposite trends. SVF remains a misleading
measure of error resilience. Only the full system, cross-layer
AVF measurement can deliver accurate comparison among
workloads vulnerabilities to faults.

IV. COMPARISON BETWEEN AVF AND SVF
USING A HARDENING METHOD

The final goal of reliability measurement and study is
always to fortify applications and systems against hardware
faults. In this section, we conduct a case study using both
AVF and SVF methodologies to measure the effectiveness
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of protection mechanisms. The aspiration herein is that the
diverging trends observed in the unprotected system analysis
and discussed in the previous section will be less dramatic. We
implement a powerful (and thus high-cost) software-level hard-
ening mechanism, Triple Modular Redundancy (TMR) [51],
on all application kernels. Both AVF and SVF are used to
measure the resilience of the protected application kernels.

A. Hardening Method and Implementation

We start with discussing the choice of hardening method
to be examined. Redundancy can be deployed at either the
hardware or software level. Hardware redundancy has to be
implemented in the simulator used for cross-layer vulnerability
assessment (AVF analysis) and on the physical GPU used for
software-level fault injection. In short, hardware redundancy
on these two deployments needs to be implemented separately,
which introduces additional threats to validity. For a fair
comparison, we implement TMR at thread level into the
application source code, so that the same hardened application
is evaluated for its AVF (using the GPGPU-Sim 4.0 [44]) and
SVF (using the NVBitFI [25], [27]).

Figure 6 shows the workflow of TMR application hardening.
The dark green color in Figure 6 shows the original execution
of the application or the kernel without hardening. The figure
also illustrates the additional steps for hardening, as enumer-
ated below:

1) Pre-processing. Two more copies of input data are added
for redundancy.

2) Kernel Execution. The number of threads of each appli-
cation is triplicated, i.e., the same execution is performed
three times in total (in parallel).

3) Post-processing. From Step 2, three copies of outputs are
generated from three identical executions. Majority voting
is then used to determine the final (correct) output. If one
of the three executions in Step 2 is corrupted and results
in incorrect output, the other two copies still have the
correct output.

B. Resilience of Hardened Kernels

In this section, we discuss the vulnerability of the hardened
application kernels. Figure 7 shows the AVF and SVF of the
kernels with and without hardening. For most of the kernels,
both AVF and SVF are improved when applying the software-
based hardening method, i.e., increased application resilience.
However, several kernels show increased vulnerability when
applying the software-based hardening method. Specifically,
BackProp K2 and SRADv1 K2 show increased AVF compared
to the unprotected kernels; BackProp K1, SRADv1 K2, and
SRADv1 K3 show increased SVF compared to the unprotected
kernels. Here we point out several opposite trends: 1) SRADv1
K3 where the SVF increases but AVF remains at the same lev-
els, 2) BackProp K1 with increasing SVF and decreased AVF,
and 3) BackProp K2 where the SVF is slightly decreasing
but AVF is much higher after hardening. Clearly, measuring
the resilience using the SVF can provide a completely wrong
indication of improved reliability. Nevertheless, applying TMR

Majority Voting

Add two more copies of data1) Pre-processing

Add two more copies 
of thread execution

2) Kernel Execution

3) Post-processing

Final Output DUE

All three copies are different

Thread (Copy 0)

Input (Copy 0)

Output (Copy 0)

Thread (Copy 1)

Input (Copy 1)

Output (Copy 1)

Thread (Copy 2)

Input (Copy 2)

Output (Copy 2)

Fig. 6. Triple Modular Redundancy (TMR) workflow.

significantly increases execution time (around 3x); hence, the
application has a higher chance of encountering soft errors.
This emphasizes again the importance of correct reliability
evaluation and decision.

The purpose of TMR is to correct SDC fault effects. SVF
shows that the SDCs (Silent Data Corruptions) are effectively
eliminated by TMR. Turning into AVF, we see that there is
a considerable number of SDCs even after hardening, see
Figure 8. For most kernels, the percentage of SDCs decreases
after hardening, but surprisingly this is not the case considering
the AVF of SRADv1 K2.

We further elaborate on the faults in some kernels that
result in SDCs in AVF after hardening. We note that these
faults cannot be detected by any software-based hardening
method, because they are hardware-induced faults that cannot
be visible to the software. Assume for example that a fault
occurs on a cache line that contains data that are part of the
application output. If the data of the cache line are not used
again by the application (i.e., they are not read again by an
instruction), they will be eventually written back to memory
without ever being read again by the program flow, and thus,
there is no further masking opportunity neither at the hardware
nor at the software layer. Since these data are part of the
program output, the output will be certainly corrupted (i.e.,
result in SDC). SVF methods cannot model or evaluate such
kinds of faults, since they are unknown to the software layer.
This is the reason that while AVF shows the remaining SDCs
after hardening, the SVF shows that SDCs are eliminated.
This particular phenomenon has been identified in CPUs as
well [17].

Figure 9 shows the percentage of timeouts and DUEs with
and without hardening. There are very few Timeouts for
SVF and very few DUEs for AVF (they are hardly visible
in the figure). In most of the kernels, the percentage of
DUE outcomes increases, because the resource usage of the
application is increasing. For example, the memory usage
is triplicated, leading to more “illegal memory accesses”
classified as DUE outcomes in software-level fault injection,
resulting in increased vulnerability in some kernels.

The detailed breakdown of AVF considering different com-
ponents with and without hardening for several kernels is
shown in Figure 10. Due to space constraints, we only present

7



0

25

50

75

100
SV

F 
(%

)
w/o Hardening
w/ Hardening

SR
AD

v1
 K

1
SR

AD
v1

 K
2

SR
AD

v1
 K

3
SR

AD
v1

 K
4

SR
AD

v1
 K

5
SR

AD
v1

 K
6

SR
AD

v2
 K

1
SR

AD
v2

 K
2

K-
M

ea
ns

 K
1

K-
M

ea
ns

 K
2

Ho
tS

po
t K

1
LU

D 
K1

LU
D 

K2
LU

D 
K3

SC
P 

K1
VA

 K
1

NW
 K

1
NW

 K
2

Pa
th

Fi
nd

er
 K

1
Ba

ck
Pr

op
 K

1
Ba

ck
Pr

op
 K

2
BF

S 
K1

BF
S 

K2

0

2

4

AV
F 

(%
)

Fig. 7. AVF and SVF of hardened applications.
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Fig. 8. The percentage of SDC outcomes of AVF for applications with and
without hardening.

several representative kernels. For SRADv1 K2, the percentage
of SDC outcomes for register files and the shared memory
is reduced after hardening, but for the L1 data cache and
the L2 cache, there is a higher number of SDC outcomes,
which contributes to increased SDCs in the kernel AVF
due to the hardening. Note that when applying a software-
based hardening method, the reliability characteristics of an
application or a kernel are completely different compared to
the unhardened one. For example, in SCP K1, the SDC and
Timeout in register files and shared memory contribute to the
main source of SDC and Timeout in Figure 8 and Figure 9
before hardening; with hardening applied, the main source of
SDC and Timeout is from L2 caches. This case illustrates that
being agnostic of the underlying hardware structures is a clear
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shortcoming of SVF.
Comparing these four hardware structures, register files

and shared memory have an increased probability of getting
SDCs without hardening. Therefore, the improvement of TMR
mostly falls in register files and shared memory, which con-
firms its ability to correct SDC outcomes. Figure 10(c) shows
that L1 data caches have the smallest vulnerability across all
considered hardware structures. In Figure 10(d), we can see
that hardening introduces extra vulnerabilities in L2 caches,
for example, the increased SDCs in SRADv1 K2 and SCP
K1, the timeouts in SCP K1 and BackProp K2, and the DUEs
in NW K2. This level of detail in reliability assessment can
only be given by cross-layer analysis provided by AVF, but
not by SVF.

We are also interested in the effect of soft errors on the
control path and data path. Profiling every single executed
instruction would introduce tremendous overhead in our anal-
ysis. To this end, we profile the number of executed cycles
for the hardened kernel and use it as a proxy to track the
change of control path. For the data path, the final output is
the critical data, so the fault injection outcome, i.e., masked
or corrupted, represents the status of the data path. Figure 11
shows the percentage of control-path-affected masked runs
for each kernel with or without hardening. For most of the
kernels, the percentage of control-path-affected masked runs
increases after hardening, except for one outlier, SRADv1 K3.
This observation shows that hardening is able to correct many
control-path-affected runs and maintain the correctness of the
data path.

Insight #5: Although software-level evaluation confirms that
SDCs are effectively eliminated, the cross-layer evaluation
shows that some SDCs remain despite the heavy penalty of
protection. While most of the SDCs are eliminated, Detected
Unrecoverable Errors (DUEs) instead increase, resulting
frequently in higher vulnerability of the heavily protected
application compared to the unprotected one.

V. REASONING ABOUT DIVERGING RESULTS

The endeavor of GPU soft error vulnerability evaluation
is very challenging due to the massiveness of the hardware
and the highly parallel nature of workloads executed on them.
Vulnerability assessment methods considering hardware faults
for GPUs focus on one of the fundamental abstraction layers:
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Fig. 11. Control-path affected masked runs for microarchitecture-level fault
injection.

either at the microarchitecture or at the software layer. The
main difference among the evaluation methods is the presumed
origin of the fault: the microarchitecture level starts from the
actual hardware bits, while the software level starts even higher
from the (destination) register values of a single dynamic (i.e.,
currently executed) instruction. Apart from the fault origin, the
fault injection and simulation methodology followed by any
methodology are the same. They both assume a flipped bit as
the fault origin (in a certain abstraction layer) and simulate
an application to check if the fault affects the eventual output
of the program (SDC) or if it affects the program execution
before any output is generated (Crash, DUE).

In this section, we discuss two major aspects of soft error
vulnerability assessment for GPUs. Firstly, we clarify, for the
first time, the difference between microarchitecture-level and
software-level fault injection in GPUs. Secondly, we list the
most important reasons that, according to our study, higher-
level fault injection methods fail to provide correct results for
reliability evaluation.

A. Microarchitecture- vs. Software-Level Fault Injection

In the previous sections, we demonstrated that
microarchitecture-level and software-level fault injection
may result in dramatically different resilience estimations
for the same application with respect to both actual values
and relative trends. Such discrepancies stem from inherent
assumptions of the respective fault injection methodologies.

Microarchitecture-level fault injection assumes that the ori-
gin of the fault is any hardware bit. These hardware bits can be
residing in either architecturally visible or non-architecturally
visible locations. Architecturally visible locations are a subset
of the software resources (registers and memory) that are used
by a program. For example, since not the entire memory
address space is used by an application, only a part of the
available memory is used and is visible. In addition, the
executed instructions themselves and their operand fields, as
well as the data transactions between registers and memory,
are architecturally visible.

On the other hand, software-level fault injection assumes
that the origin of the fault is any directly addressable resource
of the software, which is a subset of architecturally visible
resources. For example, software-level fault injection tools
(e.g., GPU-Qin [14], SASSIFI [12], and NVBitFI [25]) inject
faults only at the values of currently used registers by the
program. Such faults can affect the computational results or

the temporal memory values (e.g., the fault affects the register
value in a load instruction). To the best of our knowledge, there
is no software-level fault injection tool that considers faults in
opcode or register operands. This means that, by definition,
software-level fault injection (and equivalently SVF) only
considers a subset of architecturally visible faults.

B. Sources of the Measurement Error of Software-Level Fault
Injection

As discussed earlier, SVF provides diverging reliability eval-
uation results compared to the ground-truth cross-layer AVF.
In this section, we analyze the main reasons that SVF fails to
provide correct estimation results and propose some potential
solutions that could significantly improve SVF estimation.

A major source of the measurement error of software-level
fault injection is that it only considers instantaneous faults
when a single instruction is executed, but not the effect of
multiple accesses of a bit flipped by a transient fault. By flip-
ping a bit in a destination register of an executed instruction,
the evaluation fails to assess potential repetitive corruptions
of following executed instructions, which depend on this bit
flip. For example, assume a hardware-induced fault that affects
a single bit of a register, the register R0 in instruction #4 of
Figure 12. Instruction #5 and #7 both read from this corrupted
register and would be affected by the same fault. This aspect
is completely ignored by software-level fault injection studies,
but microarchitecture-level fault injection methods cover such
a scenario by definition. A potential solution to this problem
is to enable fault injection into source registers and augment
the software-level fault injection tools with a register reuse
analyzer, along with fault injection. The register reuse analyzer
can be implemented at the compiler level, and a possibility is
to integrate it with the fault injector built on top of LLVM
(LLFI-GPU [9]).

Figure 12 shows an example of this process. Assume that
a fault is injected in register R0 of instruction #4, as shown
in Figure 12. In a typical SVF-based methodology, the fault
would affect only this instruction, assuming that an SVF
methodology injects in source registers as well. However, that
register is getting read again by more instructions (i.e., #5 and
#7), and thus, the fault should affect all these instructions.
Therefore, a register reuse analyzer could contribute to this
limitation of the SVF-based methodologies by replicating the
fault in any R0 register of any following instruction that
attempts to read from this register, until it is written for the
first time. The red circles represent all R0 occurrences that
need to be affected by the fault.

Another source of error in software-level fault injection is
that it completely fails to consider the hardware (microarchi-
tectural) masking effects. Assume, for example, cache line
eviction. Any valid cache line is an architecturally visible
resource if the same line is not valid on a higher cache
level [52]. However, a cache line eviction, which is a normal
microarchitectural operation, can immediately change this con-
dition, and a fault that was initially flagged as software visible
can turn into software invisible. Assume, that a hardware-
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#1  [0x00033c08] S2R    R0, SR_CTAID.X
#2  [0x00033c10] S2R    R3, SR_TID.X
#3  [0x00033c18] IMAD   R4, R0, c[0x0][0x14C], R3
#4  [0x00033c20] ISCADD R3, R0, c[0x0][0x140], 0x2
#5  [0x00033c28] ISCADD R2, R0, c[0x0][0x144], 0x2
#6  [0x00033c30] LD.CG  R3, [R3]
#7  [0x00033c38] ISCADD R0, R0, c[0x0][0x148], 0x2
#8  [0x00033c40] LD.CG  R2, [R2]
#9  [0x00033c48] FADD   R3, R0, R2
#10 [0x00033c50] ST     [R0], R3

Fig. 12. An example of the register reuse analyzer. A fault in the register R0
should affect every instruction that attempts to read from this register. The
analyzer could replicate the fault of instruction #4 into all R0 occurrences
until the R0 is written for the first time.

induced fault occurs in the L1 data cache and that the cache
line with the corrupted value is evicted. Eviction only happens
on cache lines that are not dirty so that the faulty cache line
will be never written back. Thus, a load instruction that loads
the data value from a lower memory level will retrieve the
correct (i.e., non-corrupted) value.

Insight #6: A microarchitecture-dependent resilience
measurement is the only solution.
A fault can be initially considered architecturally visible,
but it may eventually turn invisible to the architecture, and
thus, to the software. This aspect, by definition, changes the
distribution of faults that eventually become architecturally
visible. As long as software-level fault injection tools do
not consider hardware masking and the distribution of faults
that eventually become visible to the software, they fail to
provide correct reliability estimation results. Consequently,
the only solution for this limitation is a microarchitecture-
dependent evaluation. The simulation throughput of cross-
layer AVF measurements including the microarchitecture and
the software is a clear optimization aspect for tools along
these lines.

VI. FUTURE ENHANCEMENTS

In this section, we emphasize the key areas for improve-
ment, for GPU vulnerability studies aligned with our work:

• Compute Capability: Small discrepancies in com-
pute capabilities between GPGPU-Sim 4.0 (used for
microarchitecture-level fault injection) and NVBitFI (for
software-level fault injection) could marginally affect
the findings. Aligning compute capabilities closer could
refine absolute numbers. AccelSim [53], a trace-based
simulator supporting newer compute capabilities, might
offer a potential solution, although its current functional-
ity cannot provide a deterministic output file to determine
SDCs.

• GPGPU-Sim 4.0 Simulator: gpuFI-4, the chosen
microarchitecture-level fault injection tool, may introduce
biases due to the GPGPU-Sim 4.0 implementation (since
it is not an official Nvidia simulator). Despite this, it
remains the most faithful open-source simulator resem-
bling GPU hardware design. While lower-level simulators

(like RTL) could refine our findings, their use would
significantly increase simulation duration, making such
a study with realistic duration benchmarks infeasible.

• NVBitFI Instructions: NVBitFI performs fault injection
on general-purpose instructions exclusively (i.e., not all
the instruction types are supported). While this limitation
does not cover all instruction types, it cannot impact our
analysis and findings, since general-purpose instructions
are prevailed.

• GPU devices: In this work, the microarchitecture-level
and software-level fault injection experiments are per-
formed on two similar but distinct GPU devices, due to
the compatibility restrictions of tools. We carefully select
the closest pair of GPUs with the same microarchitecture,
and the considered hardware structures are all the same.
We acknowledge that this could marginally affect some
absolute values, but it cannot impact the final relative
trends.

• SVF in error propagation analysis: Using a single met-
ric, SVF, is misleading in resilience assessment. However,
software-level fault injection may still have its value,
for example, conducting fast error propagation analysis
across instructions to explore software-based protection
techniques. The correctness and possibility of using SVF
in error propagation analysis is an interesting angle but
out of the scope of this work.

Although there is always space for refinements,
GPGPU-Sim 4.0 stands as the predominant open-source
microarchitecture-level GPU simulator in recent research.
Similarly, gpuFI-4 and NVBitFI are the only open-source
microarchitecture-level fault injector and an industry-
supported tool, respectively, adding credibility to our research
on relative vulnerability analysis in modern GPUs.

VII. RELATED WORK

Application resilience has been measured at different
levels. In addition to the cross-layer AVF, Sridharan and
Kaeli introduced the concept of Program Vulnerability Fac-
tor (PVF), which measures the microarchitecture-independent
portion of AVF, by considering only the architecturally-visible
faults [54]. Fault injection techniques are applied in the
CPU domain at different levels to evaluate CPU application
resilience [10], [17], [55]–[62]. Fault injection is commonly
used to evaluate the resilience of GPGPU applications as
well [12], [14], [16], [41], [48], [63]–[67]. Tselonis et al.
in [15] proposed GUFI on top of GPGPU-Sim [44], to study
the reliability of GPGPU applications.

Neutron beam experiments [68]–[78] are used for resilience
assessment. Although these experiments can provide accurate
results, they are not always feasible, and it is hard to precisely
control fault occurrence and analyze error propagation. Li et
al. study the error propagation of different kernels in GPGPU
applications [9]. Trident [59] analyzes error propagation at
different levels to predict the percentage of SDC outputs
for the whole application and its instructions. G-SEPM [13]
incorporates different machine learning models to achieve
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accurate and efficient soft error prediction for GPGPU appli-
cations. Comparisons of resilience estimation methodologies
have been performed in several CPU studies [17], [79]–[82].
The closest study to the one presented here is done in the
CPU domain: Papadimitriou et al. consider single-bit faults
in different hardware components at the microarchitecture, at
the ISA level, and at the software level, and identify pitfalls
in CPU reliability evaluation [17]. Our study represents the
first extensive study comparing resilience estimation outcomes
from microarchitecture-level and software-level fault injection
on GPUs, highlighting divergent conclusions regarding appli-
cation resilience derived from SVF. Moreover, contrasting our
results with those of [17], we highlight a considerably greater
error magnitude in SVF methods on GPUs, indicating a higher
frequency of contradictory vulnerability trends compared to
ground-truth AVF, especially due to the underutilization of
large register files in GPUs. Consequently, software-level
vulnerability methods are more prone to yield inaccurate
estimation results for GPU applications compared to CPU
applications.

VIII. CONCLUSION

In this paper, we extensively measured and analyzed tran-
sient fault effects on NVIDIA GPUs examining both microar-
chitecture and software levels. Our key finding emphasizes the
discrepancy between software-level vulnerability assessments
and their accuracy when compared to microarchitecture-level
methods for applications. To delve deeper into this discov-
ery, we conducted a case study evaluating the efficacy of
thread triplication — a potent yet costly protection mech-
anism—using both SVF and accurate cross-layer evaluation
(AVF). The insights gained are enlightening: (a) software-level
evaluation indicates triplication effectively eliminates SDCs,
but cross-layer evaluation reveals the opposite for certain
benchmarks — they become more vulnerable despite the heavy
protection, and (b) while SDCs are eliminated, the probability
of other critical fault effects, like DUEs, impacting application
reliability, may significantly increase. We elaborated on why
neglecting underlying hardware in software-level fault injec-
tion yields divergent outcomes, emphasizing the necessity of
microarchitecture-aware evaluations for precise GPU vulner-
ability assessment. This study highlights the inconsistencies
in reliability assessment methodologies and paves the way for
addressing this cross-layer gap.
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