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ABSTRACT
Generative Large Language Models (LLMs) are deployed on large-
scale computing systems, where such tasks unavoidably suffer from
soft errors, leading to quality degradation of content generated by
LLMs. Enhancing LLM resilience is particularly challenging because
of its complicated model architecture and tremendous size. State-
of-the-art protections have limitations such as high overhead and
incomplete coverage, and often require offline profiling.

In this work, we design FT2, a First-Token-inspired online Fault
Tolerance methodology for generative LLMs, offering high reliabil-
ity and low overhead. Inspired by our comprehensive characteriza-
tion study, FT2 selectively protects critical layers on the fly during
inference and leverages the information (bounds) from the first
token generation to protect the generation of the following tokens
based on the similarity of the input data during token generation.
We extensively evaluate FT2 across seven LLMs and three datasets
under three fault models, achieving 92.92% silent data corruption
(SDC) rate reduction with only 3.42% overhead on average.
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1 INTRODUCTION
Deep learning models, especially generative Large Language Mod-
els (LLMs), are widely used for various tasks such as text gener-
ation, machine translation, question answering, and code gener-
ation [1, 48, 63, 66]. The growing size and complexity of LLMs
enhance their ability to solve increasingly complex and challeng-
ing problems, requiring substantial computational resources. As a
result, the intensive inference tasks are preferably hosted by large-
scale computing systems, where such tasks inevitably face the
challenges of increased probability of encountering soft errors (i.e.,
transient hardware faults) [51–53, 65]. As the most commonly ob-
served errors in computing systems, these soft errors originate from
cosmic radiation [21], shrinking transistors [8], and low-voltage
operations [10], resulting in serious outcomes such as silent data
corruptions (SDCs), e.g., wrong answers or misleading information
in the context of LLM inference. Therefore, mitigating the impact
of such errors on LLM inference is of great importance.
Limitations of state-of-the-art approaches. Depending on the
types of faults encountered in large-scale systems, existing fault
tolerance techniques have fundamental limitations. For instance,
faults affecting the computational pathwould bypass the ECC (Error
Correction Code) in memory and propagate during execution. On
the other hand, common software-based approaches are typically
designed for fail-stop failures (i.e. checkpoint/restart) or potentially
incur non-trivial overhead (i.e. algorithm-based checksum). Among
those, range restriction is a particularly useful technique due to
its negligible overhead (less than 1% for convolutional neural net-
works) [12, 58] and high effectiveness. Unlike other techniques that
are applied throughout LLM execution, range restriction protects 1

LLM inference at a coarser granularity after layer execution. Range
restriction achieves protection by checking the neuron values of
each protected layer and clipping outlier neurons to 0 (or a small
value) according to the bounds obtained by offline profiling using
the training datasets, to eliminate the impact of extremely corrupted
values on model output.

However, existing range-restriction-based solutions [12] have
two major limitations. First, the SDC rate remains considerable
(an average of 2.08% for the models and datasets studied in this
work) even with existing solutions applied. Through our quanti-
tative characterization study, we identify the underlying reason:
the lack of fundamental approaches for identifying critical layers,
i.e., ignoring the protection of these layers results in non-negligible
SDC outcomes. Second, all range-restriction techniques rely on
offline profiling to obtain the bounds of neurons. Such processes,
however, are not always feasible for LLMs, as the training datasets
1Note that in this paper we refer protection as performing both error detection and
correction to prevent LLM inference from generating silent data corruptions.
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may be unavailable for LLM tasks [24, 41, 69]. Offline bound profil-
ing also suffers from high profiling costs (4.7 - 217.5 hours on an
NVIDIA A100 GPU, as shown in Section 3).
Motivation and Challenges. The aforementioned limitations of
range-restriction techniques motivate us to design a practical, au-
tomated LLM fault tolerance solution that effectively explains and
leverages LLM characteristics. However, it is complicated to analyze
and pinpoint the critical components in LLMs due to their growing
size and complexity. Additionally, considering the limited input
data per LLM inference, designing an online-only technique with
effective bounds and high fault tolerance is particularly challenging.
Key insights and contributions. To overcome the challenges,
we design and present FT2, a First-Token-inspired online Fault
Tolerance methodology on critical layers for generative LLMs, of-
fering high reliability and low overhead. Through extensive fault
injection experiments, we assess the criticality of layers, i.e., the
necessity of protecting certain layers. Our quantitative analysis
demonstrates that protecting the identified critical layers brings
huge reliability benefits. We further analyze the LLM model ar-
chitecture and reveal the underlying reasons for layer criticality:
residual branches can recover the information loss due to NaN,
while scaling operations and activation layers can reduce the mag-
nitude of faulty values and change the NaN distribution under
the impact of hardware faults. We propose a heuristic to classify
critical/non-critical layers: a layer is critical if no scaling operation
or activation layer is present before the following linear layer.

When facing generative LLMs, the input for generating the first
token is a subset of the input for generating the following tokens,
therefore the neuron values have similarities. This enables another
key idea of online FT2: leveraging the information of the first token
generation to infer the bounds of generating other tokens. This idea
is supported by two key insights derived from our study: the bounds
are reusable between the first token and the following tokens and
the impact of soft errors on the first token generation is marginal
(detailed in Section 4). These two key insights are validated through
progressive reasoning and experiments. For error correction, we
pinpoint a unique characteristic of generative LLMs, the existence of
large neuron values in generative LLMs. This unique characteristic
guides our design choice of clipping extreme out-of-bound values
inside the bound.

Our main contributions are summarized as follows:

• We perform a thorough and detailed characterization study
to assess LLM layer criticality and explain the underlying rea-
sons.We propose an efficient heuristic to classify critical/non-
critical layers: a layer is critical if no scaling operation or
activation layer is present before the next linear layer.

• We identify a unique feature of generative LLM tasks, the
input similarity among the generation of tokens. FT2 lever-
ages this unique feature to achieve online-only protection:
bounds are profiled during the first token generation and
then used to protect the generation of the following tokens.

• Wepresent FT2, a First-Token-inspired online Fault Tolerance
methodology for generative LLMs, offering high reliability
and low overhead. We pinpoint a unique characteristic of
generative LLMs, the existence of large neuron values (see

subsection 4.3 for details), which informs our design choice
of clipping extreme out-of-bound values to the bound.

• We extensively evaluate FT2 across seven LLMs and three
datasets under three fault models to show their effective-
ness and efficiency with over 11 million fault injection ex-
periments. We also demonstrate FT2 with data types and
hardware configurations. FT2 outperforms the existing pro-
tection mechanisms and achieves 92.92% SDC rate reduction
with only 3.42% overhead on average.

Experimental methodology and artifact availability. We eval-
uate our methodology on two sets of NVIDIA GPUs, A100 and
H100. We consider common fault models used in reliability stud-
ies [12, 18, 44, 72], including single-bit flip, double-bit flip, and
single-bit flip in Exponent bits. The fault injection experiments
are performed using the hook mechanism of PyTorch, which is
similar to PyTorchFI [45]. We choose the state-of-the-art range-
restriction-based solutions: Ranger [12], MaxiMals [57], and Global
Clipper [60] as baselines. We have publicly released FT2 and its
associated fault injection framework2.
Limitations of the proposed approach. We recognize that FT2
uses heuristics to target critical layers, and speculates the bounds
obtained from the first token for the following tokens. Our heuris-
tics are under the assumptions that no training data is available for
offline bound learning, and the resource requirements of applying
such a range restriction to all layers are extensive. In extreme cases
where the safety-critical applications are present, achieving 0% SDC
may require additional techniques such as duplications in place,
where the corresponding significant overhead is expected.

2 BACKGROUND
In this section, we present an overview of Large Language Models.
Then, we describe the fault models and fault injection techniques
that are extensively employed in this study.

2.1 Large Language Models
Large Language Models (LLMs) have emerged as a groundbreaking
advancement in artificial intelligence, particularly in natural lan-
guage processing. Most LLMs are transformer-based models, con-
sisting of encoders and/or decoders that rely on the self-attention
mechanism. The encoder extracts features from the input, and the
decoder produces different outputs for different downstream tasks
based on these features. Typically, generative LLMs are decoder-
only models, where the decoders can attend to (i.e., access informa-
tion from) previous tokens only through causal masking, further
improving their capabilities for generation.

Most LLMs have similar architectures that consist of a cascade
of transformer blocks. Each block has two major components: an
attention block and a Multi-Layer Perceptron (MLP) (Figure 1). In
the attention block, the input is transformed into Key (K), Query
(Q), and Value (V) through their respective projection layers. The
attention weights, computed fromQ-K interactions, are applied to V.
The weighted output then undergoes a final linear transformation
through the out_proj layer. The Multi-Layer Perceptron (MLP) con-
sists of two or three linear layers and one activation layer, following
the attention block. This architecture aims to enhance the model
2https://github.com/pipijing13/FT2-LLM-inference-protection
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(a) OPT-6.7B (b) Llama2-7B
Figure 1: Different LLM Model Architectures.

representation capability after the attention mechanism. The LLMs
considered in this work have different linear layer settings. Here
we list two examples, OPT-6.7B in Figure 1(a) and Llama2-7B in Fig-
ure 1(b). The main differences lie in the number and arrangement
of linear layers in MLP.

2.2 Fault Model
The soft errors are the manifestation of hardware transient faults
originating from sources like cosmic radiation [21], shrinking tran-
sistors [8], and low voltage operations [10]. In this study, we assume
that register files, caches, and memory are protected by Error Cor-
rection Code (ECC), which is the case in modern CPUs and GPUs
used for LLM tasks [23]. Hence, the fault model considered is the
computation-related faults affecting computational hardware com-
ponents such as ALUs (Arithmetic Logic Units). This fault model
aligns with the prior studies [5, 22, 36]. In particular, we consider
three fault types: 1) 1-bit: single-bit flip, 2) 2-bit: double-bit flip, and
3) EXP: single-bit flip in Exponent bits [26], representing the typical
faults affecting the computation. We consider the EXP fault model
as a more challenging scenario since bit flips in exponent bits are
more likely to have severe consequences [26, 55].

2.3 Fault Injection
To understand the impact of hardware faults on the LLM computa-
tions, we rely on fault injection (FI) experiments. A fault injection
experiment in our study is to mimic the behavior of a fault (e.g.
single- or multi-bit flips) occurring during the computation system-
atically and observe what is the outcome of the fault [12, 35, 40].
Assumptions. We only consider soft errors during the inference
phase of the LLMs, since typically the LLMs are trained once and
repeatedly used by a large number of users [1, 11, 29, 63].We assume
that only one error occurs per inference because it is unlikely that
multiple faults occur during the short period of a single inference
(usually in milliseconds or seconds). Our assumption aligns with
the prior studies [2, 5, 20, 35, 36, 56, 59, 68].
Tool. A couple of fault injection frameworks for convolutional
neural networks are publicly available, such as TensorFI [13], Py-
TorchFI [46], and SNIFF [9]. Our fault injection extends the hook
mechanism of PyTorch to directly inject faults into randomly se-
lected neurons, which is similar to PyTorchFI. For each fault injec-
tion trial, the location of the model to inject a fault is identified by

the layer ID, neuron ID, and bit locations. Since LLMs primarily per-
form matrix computations associated with neurons [31], our fault
injection campaign covers the predominant hardware operations.
Outcome category. The outcome of a fault injection experiment can
be categorized as follows:

• Masked: The injected fault does not affect the correctness
of LLM outputs. There are two types of masked output for
LLMs: (1) the text generated by LLM is identical to the one
from fault-free execution; (2) the output is different from the
fault-free one but the generated text is semantically correct,
i.e., if the meaning of the answer is equivalent to the refer-
ence answer (i.e., the information asked by the question).
For example, “The number of people is 5” is also correct
compared to the fault-free answer “There are 5 people” for
question-answering tasks; thus, it is considered a masked
outcome.

• Silent Data Corruption (SDC): The text generated by LLM
is different from the fault-free execution and is semantically
wrong. For instance, “There are 4 people” should be an SDC
compared with the fault-free output “There are 5 people”.
If the answer does not contain or partially contains the ref-
erence answer, it is classified as a wrong answer and thus
treated as an SDC outcome.

Note that the outcome of one fault injection run only denotes the
resilience of that location of the fault injection, i.e., the vulnerability
of that specific fault site to bit flips. To evaluate the resilience
of the whole LLM, one should perform exhaustive fault injection
experiments at every fault site. However, covering all fault sites is
impossible, as the total number can reach billions or even trillions
for LLMs. Instead, we conduct a statistical fault injection, aligned
with prior works [2, 73–75]. Each experiment involves injecting a
single fault at a random (i.e., uniformly distributed) location. We
only consider linear layers in the decoder blocks of the model, since
they consist of most of the computation (e.g., 94% in Llama2-7B
model with sequence length set to 1024) and thus are more likely to
encounter soft errors. In total, we have conducted over 11 million
FI experiments, with around 8000 GPU hours.

3 MOTIVATIONAL STUDY
In this section, we pinpoint the limitations of the state-of-the-art
range-restriction-based solutions and quantitatively measure their
deficiencies. We start with their deficiency in protecting LLMs, then
show the undesirable high cost of profiling. Among various pro-
tection techniques, range restriction is particularly popular due to
its negligible protection overhead compared to other protection
techniques [12, 58]. Range restriction protects neural networks
(NNs) by clipping outlier neurons to 0 (or a small value) accord-
ing to the bounds obtained by offline profiling using the training
datasets, to eliminate the impact of extreme corrupted values on
model output. Range restriction is originally designed for Convolu-
tional NNs (CNNs) and there are several works applying it to the
transformer-based models. For example, MaxiMals [57] protects the
MLP layers instead of only protecting the activation layers which is
the choice of the original strategy [12]. Global Clipper [60] partially
protects the linear layers in the attention block and corrects the
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Figure 2: LLM Resilience with various protections applied
on Llama2-7B models using GSM8K dataset. A considerable
number of SDCs still exist after applying the existing range-
restriction-based methods. On the other side, our FT2 pro-
vides much more effective protection.

Not-a-Number (NaN) values. However, these methods focus on vi-
sion transformers, raising the issue of applying them to generative
LLMs, as we show below.

3.1 Limitation 1: SDC Rate Reduction
We first present the limitation observed from the existing range-
resriction-based methods for the SDC rate reduction capability. As a
motivating example, Figure 2 shows the SDC rate with and without
various existing range-clipping-based protection methods, obtained
through FI experiments under the EXP fault model, with GSM8K
dataset [15] and Llama2-7B model [66]. Compared to the results
on models without protection mechanisms applied, Ranger and
MaxiMals only reduce the SDC rate by 0.28% and 1.71%, respectively.
The best is Global Clipper with a 1.25% SDC rate after protection,
which is still not negligible. In contrast, in this paper we show that
our method FT2 achieves a much lower SDC rate of 0.19% in this
case.

Motivation #1: Existing range-restriction-based protectionmeth-
ods cannot provide sufficient protection. This motivates us to per-
form in-depth analysis and design strong protection mechanisms
to achieve low SDC rate.

3.2 Limitation 2: Bound Profiling
All existing range-restriction-based protection methods require
offline profiling before their online application. Reportedly, this
process uses 20% of the training dataset [12, 60]. These data are
fed into the ML model to perform a forward pass to obtain the
lower and upper bounds of each protected layer, which are then
employed to clip the out-of-bound neurons during inference. This
offline bound profiling is acceptable for CNN-based vision tasks
such as image classification and object detection where the profiling
datasets are publicly available, to name a few, ImageNet [16] and
COCO [39]. Meanwhile, the size of the vision model is relatively
small, allowing offline profiling that takes less than an hour [12].
However, for LLMs with especially generative tasks, there are two
main issues of this offline profiling phase: 1) the lack of datasets
and 2) high profiling costs.
Lack of datasets. The lack of datasets for various LLM tasks is a
well-acknowledged problem [24, 41, 69]. Considering the real-world
deployment of LLMs, the dataset that can be exploited for bound
profiling requires representative user prompts (i.e., user inputs).
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Figure 3: The percentage of correct outputs of OPT-6.7B
model on SQuAD 2.0 question-answering dataset when apply-
ing protection using bounds from various datasets. Applying
the alternative datasets decreases performance. Note that no
fault injection is performed in this experiment.
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Figure 4: The bound profiling time for different tasks. Note
that the y-axis is in log scale.

To compensate for the lack of datasets for bound profiling, an
alternative solution is to use the bounds obtained from other similar
datasets. Here we show that using the alternative datasets causes
the decrease of the correct output percentage, i.e., the quality of
the generated text is weaker. In this example, we use SQuAD 2.0
dataset [54] as the target dataset of LLM inference and we select
26, 000 inputs (20% of the training dataset) to obtain the bounds. We
randomly select another 50 inputs for inference with protection ap-
plied but no fault injected. We use Awesome ChatGPT Prompts [3],
TweetEval [7, 49], MBPP [6], and OPUS-100 [64, 77] as the alterna-
tive datasets to obtain bounds, mimicking the case where SQuAD
2.0 dataset being not available. Figure 3 shows the percentage of
correct outputs when applying these bounds to protect OPT-6.7B
model in fault-free inference. Since the inputs selected in our study
only involve the correctly answered inputs, the percentage of cor-
rect outputs is 100% for fault-free execution without applying any
protection (the leftmost bar). When using bounds profiled from
other datasets, the percentage of correct output drops by 1.09% to
1.81% in fault-free scenarios. Compared to the SDC rate of genera-
tive LLM inference under the single-bit fault model, which generally
ranges from 0.92% to 3.03% without protection, this decrease raises
a significant concern.

The observed degradation in generated text quality due to the use
of alternative datasets essentially reflects the data dependency of the
bounds. Since input content can vary significantly across datasets,
especially those designed for different tasks, the diversity of input
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obtained when generating the first token and applied for the protection of generation following tokens.

tokens leads to significant differences in the bounds of neurons.
Therefore, range restriction based on the alternative datasets may
create false positives to convert benign neurons into incorrect ones
without the presence of faults.
High Profiling Cost. Even if the dataset is available, the bound
profiling cost can be unacceptable due to the large model sizes
and the long output length for each inference instance. Existing
solutions use 20% (Ranger andGlobal Clipper) of the training dataset
or the whole validation dataset (MaxiMals). Figure 4 shows the
profiling time, which can reach 217.5 hours using an NVIDIA A100
GPU with 20% training data. The profiling process still takes up to
36.7 hours with a more powerful NVIDIA H100 GPU. As the LLM
size and the input length increase [30, 62], this profiling time would
become essentially unacceptable in the future.

Motivation #2: The mandatory bound profiling is expensive,
sometimes even unattainable due to dataset unavailability. This
motivates us to design new techniques that obtain boundswithout
high-cost offline profiling.

4 METHODOLOGY
In this section, we present FT2, a First-Token-inspired online Fault
Tolerance methodology for generative LLMs, offering high reliabil-
ity and low overhead by selectively protecting critical layers. The
workflow of FT2 is shown in Figure 5 and briefly described below:

• The first step is to identify critical layers given the model
architecture of an LLM. From our in-depth reliability charac-
terization (subsection 4.1), we derive a key insight for critical
layer identification: a layer is deemed critical (i.e., necessary
to be protected) if no scaling operation or activation layer is
present between itself and the next linear layer.

• The second step is to obtain bounds while generating the
first token of LLM inference. This is based on our second
key insight (subsection 4.2): the bounds profiled during the
first token generation are efficient for detecting the errors
during the rest token generation.

• The third step is the online protection by applying range
restrictions on critical layers during the token generation.We
selectively protect the critical layers to minimize the runtime
overhead of protection. An LLM-unique characteristic in
neuron values is employed to improve the error correction
accuracy (subsection 4.3).

K_PROJ Q_PROJ V_PROJ OUT_PROJ FC1 FC2
Unprotected Layers
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Figure 6: SDC rate after ignoring different layers in protec-
tion. Higher barmeans the layer ismore necessary to protect.

4.1 Identification of Critical Layers
One naïve way to achieve a high SDC coverage for soft errors is to
apply the range restriction on all layers. However, due to the large
size of the linear layers, protecting every layer may introduce unde-
sirable overhead (nearly 2×). To reduce overhead while achieving
high reliability, it is important to select layers that are critical to the
overall task accuracy. In this section, we conduct an in-depth char-
acterization study through extensive fault injection experiments
to demonstrate the existence of critical layers in LLMs. We then
analyze the model architecture to reason about layer criticality and
explore a heuristic to automatically identify critical layers without
expensive experiments.

To test the criticality of a layer, we apply protection on all linear
layers except the layer to be tested, and perform fault injection on all
linear layers, to measure whether the LLM is reliable even if we do
not protect the tested layer. The fault injection results of applying
such protection targeting different layers are shown in Figure 6.
A higher SDC rate indicates lower resilience, i.e., worse reliability.
Due to the limited space, here we report GPTJ-6Bmodel and SQuAD
2.0 dataset for example. The observations hold for all the models
and datasets we consider in this work, and are validated in the
Evaluation section (section 5). For layers such as K_PROJ, Q_PROJ,
and FC1, the SDC rates vary from 0.29% to 0.38%, indicating that
these layers are not critical. There are a considerable amount of
SDC outcomes left (0.75% - 1.82%) in V_PROJ, OUT_PROJ, and FC2
layers if we free the protection of these layers. Therefore these are
the critical layers.

Table 1 summarizes the identified critical layers (second column).
These critical layers are represented by red boxes in Figure 1. We
compare different protection selections among existing methods
and our FT2 in Table 1. The lack of protection for critical layers may
lead to the unsatisfying SDC coverage of existing range-clipping-
based methods. With our in-depth characterization, FT2 protects
all critical layers and achieves sufficient protection.

5



Table 1: Layer criticality and the protection coverage of vari-
ousmethods. Shaded lines indicates critical layers. FT2 covers
all critical layers. MaxiMals and Global Clipper protect some
critical layers, while Ranger does not protect any linear layer.

Critical Layer Ranger MaxiMals Global Clipper FT2
K_PROJ N
Q_PROJ N
V_PROJ Y ✓ ✓

OUT_PROJ Y ✓ ✓ ✓
FC1 N
FC2 Y ✓ ✓

UP_PROJ Y ✓
GATE_PROJ N
DOWN_PROJ Y ✓ ✓

Take-away #1: Critical layers and non-critical layers co-exist in
generative LLMs. Protecting critical layers is necessary to reduce
the SDC rate.

4.1.1 Underlying Reasons for Layer Criticality.
It is time consuming to perform fault injection experiments to

identify critical layers, which is undesired. Here we investigate LLM
model architecture and pinpoint two reasons for layer criticality.
First, the residual branches affect the criticality of abnormal fault-
affected values inside each layer. Secondly, the scaling operation and
activation layers affect the distribution of abnormal fault-affected
values as well as the layer criticality. We derive insights to enable
the possibility of leveraging proxies to identify critical layers.

Range restriction can detect two types of abnormal values: out-of-
bound values and NaN (Not-a-Number). Below we briefly describe
these two abnormal value types using half-precision floating point
(FP16) as an example, see Figure 7. An FP16 number has a sign bit
(marked in blue), 5 exponent bits (green), and 10 mantissa bits (red).
Figure 7(a) shows an example of a bit flip leading to an extremely
large value when the highest exponent bit is flipped. An example of
NaN is shown in Figure 7(b). In FP16 format, NaN is defined as all
exponent bits are 1 and the fraction (represented by mantissa bits)
is not 0. Values with specific exponent bits can become NaN after a
single-bit flip, and most of them are in the intervals (-2, -1) or (1, 2).
We define these two intervals as the NaN-vulnerable area and the
values fall into these intervals as the NaN-vulnerable values.

(a) Extreme value (b) Not A Number (NaN)

Figure 7: Examples of two different types of abnormal values.
The bit flip is in the highest exponent bit of FP16 datatype.

Impact of residual branches on the criticality of abnormal
values. As shown in Figure 1, residual branches (green-colored ar-
rows) duplicate the inputs of attention block and MLP, then connect
to the outputs with an add operation. Correcting NaN to 0 barely
corrupts the following computation since the residual connection
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(a) Distribution of neuron
values among different layers.

(b) Percentage of
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Figure 8: Neuron value distribution varies among different
layers for OPT-6.7B model with SQuAD 2.0 dataset. The per-
centage of values that fall into NaN-vulnerable Interval is
also significantly different.

recovers lost information from the prior part of the model. The
correction is also effective when applied to any following critical
layer before the residual connection. For example, the NaN in FC1
layer propagates to an entire row in FC2 layer. Although these NaN
in FC2 are corrected to 0, the residual fusion can pass important
former information forward, ensuring the model can still generate
correct output despite the NaN issue. However, the residual con-
nection is unable to mask extreme values, which can propagate to
the following layers and finally lead to SDCs.

Take-away #2: Out-of-bound values are more critical than NaN.
The effect of NaN is weakened by residual branches and NaN can
be corrected in other layers. Extreme out-of-bound values must
be corrected right after their originating layer to minimize the
propagation.

Our analysis shows that the criticality of out-of-bound values
and NaN is different. We profile and draw the neuron value distribu-
tion of linear layers (under fault-free execution) to investigate the
possibility of faults leading to these two types of abnormal values.
Figure 8(a) shows the output value distribution of all 6 linear layers
in OPT-6.7B model (block ID 1). The distribution is obtained from a
single inference instance using SQuAD 2.0 dataset (input ID 686).
We also report the percentage of NaN-vulnerable neuron values
in these layers in Figure 8(b). For critical layers including V_PROJ,
OUT_PROJ, and FC2, very few neurons fall into NaN-vulnerable
intervals, thus non-critical NaNs barely occur when a fault happens
in these layers. Neuron values gather tightly between -1 and 1,
which may become extreme values if the leading exponent bit is
flipped (0 → 1, as Figure 7(a) shows). For non-critical layers in-
cluding Q_PROJ, K_PROJ, and FC1, there are a large proportion of
neurons that fall into NaN-vulnerable areas (shaded in pink). Recall
that NaN is not critical because of residual branches; consisting a
large portion of NaN-vulnerable values makes a layer less critical.

Take-away #3: The variety of neuron value distribution leads to
different proportions of critical/non-critical abnormal values if
faults happen.
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Impact of scaling operations and activation layers on layer
criticality. We observe that the outputs of non-critical layers
K_PROJ and Q_PROJ in the attention block are fed into the at-
tention score calculation which performs scaling down. In other
words, the following layer of K_PROJ and Q_PROJ is performing
scaling operations where the magnitude of the extreme faulty val-
ues are reduced. Therefore, the impact of the error is decreased
and the error is more likely to be corrected by the range restriction
protections applied in other layers. For the FC1 and GATE_PROJ
layers in MLP, the following layer is the activation layer, thus simi-
lar magnitude reduction effects happen on extreme faulty values.
On the other side, there is no scaling or activation operation in
the following layers of critical layers. Thus, extreme out-of-bound
values propagate their severe faulty effect to other layers and finally
have a higher chance of causing SDCs.

Scaling operations and activation layers affect the neuron value
distribution of linear layers. Recall the model architecture shown
in Figure 1, non-critical layers are followed by activation layers or
scaling operations within attention score calculation, then the next
linear layer is always critical. Considering the effect of reducing
the value magnitude of scaling operations and activation layers,
the wider neuron distribution of non-critical layers is compressed,
i.e., to the distribution of critical layer neurons where the majority
of values are close to 0. Due to the space constraint, we cannot
show the distribution and detailed analysis of every model. We
thoroughly examine all the models considered in this work and
conclude that our observations hold for all the models.

Take-away #4: The underlying reasons for layer criticality are
twofold. First, residual branches reduce NaN criticality; layers
with fewer NaN-vulnerable values are more critical. Second, scal-
ing operations and activation layers can reduce the magnitude of
faulty values and also affect the distribution of NaN-vulnerable
neurons in layers.

4.1.2 Heuristic of Identifying Critical Layers. Inspired by the un-
derlying reasons for layer criticality, we propose two proxies for
identifying critical layers: 1) the percentage of NaN-vulnerable val-
ues and 2) the existence of scaling operations and activation layers.
The percentage of NaN-vulnerable values is calculated by profiling
the neuron value distribution, which still requires one undesirable
profiling run. On the other side, analyzing the model architecture
does not require any heavy execution and can be easily automated.
Therefore, FT2 derives layer criticality by the following heuristic: a
layer is deemed critical if no scaling operation or activation layer is
present before the next linear layer. We evaluate and validate this
heuristic through 7 LLMs and 3 datasets; see Section 5.2.1 for more
details.

Take-away #5:Model architecture contributes to layer criticality.
Scaling operations and activation layers can help with limiting
the magnitude of faulty values. We derive an efficient heuristic
to identify critical layers: a layer is deemed critical if no scaling
operation or activation layer is present before the next linear
layer.
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Figure 9: SDC rates using different scaling factors for bounds
with Qwen2-7B model and math problem task and GSM8K
dataset. After bound scaling, the SDC rate is greatly reduced.
This shows that the bound scaling is necessary although FT2
is not sensitive to different scaling factors.

4.2 First-Token Inspired Bound Profiling
Motivated by the bound profiling issues discussed in subsection 3.2,
in this section, we explore the possibility of avoiding the expensive
offline bound profiling and directly obtaining bounds during the
inference. For generative LLMs, the input for generating the first
token is a subset of the input for generating the following tokens,
therefore the values of neurons may present similarity. This enables
our key idea: leveraging the information of the first token generation
to infer the bounds when generating other tokens.

Leveraging first-token generation for bound obtaining is based
on two key insights derived from our study: (1) the bounds we
obtain from the generation of the first token with limited data are
effective in protecting the execution of generating the following
tokens; (2) The effect of soft errors on the first token generation
is negligible, therefore the first token generation without range
restriction is acceptable.
4.2.1 Effectiveness of bounds profiled from the first token genera-
tion.

The two leftmost bars in Figure 9 show the resilience of Qwen2-
7B model on GSM8K dataset before and after applying the bound
profiled from the first token generation. The SDC rate increases
after applying protection. This reflects the challenge of limited
online data: the data from generating the first token is too few to
form effective and stable bounds. The bounds are not large enough
to capture normal values. Protection using these limited bounds
may wrongly clip normal values, leading to more incorrect outputs.

We scale the bounds to overcome the challenge of limited online
data, inspired by the bound scaling initially used in MaxiMals [57].
The SDC rate of injecting faults into Qwen2-7Bmodel after applying
various scaling factors is also shown in Figure 9. We observe that
the SDC rate dramatically reduces after bound scaling. Even with
a slight scaling of 1.25x, the error resilience is greatly improved.
We conclude that performing bound scaling is necessary, but FT2
is not sensitive to the choice of scaling factor. In FT2 the scaling
factor is set to 2 for easy and faster calculation.

Take-away #6: The bounds profiled from the first token genera-
tion (with bound scaling) are effective in protecting the genera-
tion of the following tokens. Our intuition for bound scaling is to
overcome the limited online data where insufficient bounds are
profiled and normal values could be clipped.

4.2.2 Impact of soft errors on the first token generation.
7



In this section, we demonstrate that the impact of soft errors
on the first token generation is negligible. Firstly, the probability
of soft errors occurring during the first token generation is low.
Meanwhile, even if an error occurs during the first token generation,
an LLM can still achieve high resilience without bounds, given that
we can still detect and correct NaN. Last but not least, fault-affected
bounds are still effective. We expand our argument below.

Firstly, we argue that the probability of soft errors occurring
during the first token generation is low. Considering the origin of
soft errors such as radioactive particles generated from cosmic rays
and device aging, the probability of soft errors happening at a cer-
tain time is the same. Specifically, if a soft error occurs in one LLM
inference execution, the probability of soft errors occurring in its
first token generation phase is the proportion of the execution time
of the first token generation. Figure 10 shows several examples of
the execution time percentage of the first token generation over the
LLM inference, with different datasets and models on two hardware
configurations. Consistent with all the experiments in this work,
we generate 60 tokens for QA tasks and 180 tokens for Math task in
total (i.e., 1 first token plus 59/179 following tokens). The first token
generation takes less than 9% of the total inference time. In detail,
the percentage of the execution time for the first token generation
on an NVIDIA A100 GPU is 1.89% - 8.33% for QA tasks (SQuAD
2.0 and XTREME datasets), while for Math task (GSM8K dataset)
the percentage is 0.6% - 2.66%. When using an NVIDIA H100 GPU,
the percentages of execution time are 1.75% - 2% and 0.59% - 0.61%,
respectively. The first token generation takes slightly longer time
than the average token generation time because the input is larger
in the first iteration.

Secondly, the resilience of the first token generation is already
satisfying with NaN correction. Although it is not possible to detect
and correct extreme abnormal values due to the unavailability of
bounds, NaN can always be detected and corrected. We back up this
insight with resilience results in Figure 11 with SQuAD 2.0 dataset
and OPT-6.7B model. We conduct a fault injection campaign by
injecting faults during the first token generation only to assess the
impact of soft errors on the first token generation. The leftmost
bar of each group shows the LLM resilience without protection
where faults can be injected into the generation of any tokens.
Compared to the resilience of applying the complete protection
with FT2 (the middle bar of each group), the resilience of the first
token generation is already at the same level with NaN corrected.
Even for the most challenging fault model EXP where the exponent
bits are flipped, the resilience of the first token generation is still
satisfying. The model can generate correct output even if the first
token is different, because the first token is often a meaningless
special token, e.g., “the”.

Lastly, fault-affected bounds are still effective when a fault occurs
at the generation of the first token (assuming that NaN is corrected),
only the layer that encounters the occurrence of the fault would
experience a significant change in its bounds. The bounds of other
layers may change slightly, therefore are still effective in detecting
and correcting abnormal values. Considering the rareness of two
hardware faults happening at one LLM inference and on the execu-
tion of the same layer, the probability of the second fault occurs on
the same fault-affected layer with the faulty bound is negligible.
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Figure 10: The percentage of execution time for the first
token generation. Generating the first token takes less than
10% of the total execution time.
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Figure 11: The resilience of the first token generation is high.
Correcting NaN in the first token generation can further
reduce SDC rate to the same level as applying full protection
to the following generation, which is negligible.

Take-away #7: The bounds profiled from the first token gener-
ation are still effective even with the presence of a soft error at
first token generation.

4.3 Applying Protection
After finishing the generation of the first token, FT2 assumes to
have the bounds for the rest of the tokens. Protection is applied
after the execution of each critical layer. FT2 checks all the neuron
values within each critical layer to detect abnormal values.

Protection through range restriction only detects/corrects large
abnormal values. This is because most neurons are not large in
magnitude and small faulty values barely lead to SDCs. However,
large faulty values easily trigger SDC outcomes. Figure 7(b) shows
an example of a bit flip leading to an extremely large value when the
highest exponent bit is flipped. We clip the extreme out-of-bound
values to the bound to conservatively reflect the large (but nor-
mal) values in generative LLM tasks. For example, Figure 12 shows
the value distribution of neurons in DOWN_PROJ, UP_PROJ, and
GATE_PROJ layers of Vicuna-7B model (block ID 1) with SQuAD
2.0 dataset (input ID 686). Most values are close to 0 for both layers,
but there are a few large values in DOWN_PROJ layer. Note that this
value distribution is profiled from a fault-free execution, and these
outliers may exceed the bounds after fault injection. Therefore, clip-
ping these values to 0 would result in significant deviation, which
may lead to an incorrect output. Using distribution-based sampling
methods [42] leads to similar huge deviations and wrong outputs,
since most neuron values are close to 0. In contrast, clipping the out-
liers to bounds is more appropriate in handling these large values

8



DOWN UP GATE
-2k

0

2k

4k

Va
lu

es

Figure 12: The neuron value distributions of three layers
from Vicuna-7B model with QA task and SQuAD 2.0 dataset.
Large neuron values exist in some layers of generative LLMs.

and can maintain model performance. We emphasize that the exis-
tence of large neuron values is a unique characteristic of generative
LLM tasks. Existing range-restriction-based solutions focus on im-
age tasks where extreme neuron values are very few [12, 42, 57, 60],
leading to small bound values which are close to 0. Clipping those
out-of-bound values to 0, bounds, or sample values has a similar
effect since the deviation is negligible in these image tasks.

Take-away #8: Due to the existence of large neuron values in
generative LLMs, extreme out-of-bound values must be clipped
to the bound.

Implementation. Our protection method is implemented by only
using the default PyTorch functions. We employ torch.clamp and
torch.nan_to_num to correct the out-of-bound values and NaN val-
ues, respectively. To lower the runtime overhead, we fused these
two operations into a newTorch-level function based on torch.clamp
by modifying less than 20 lines of C++ code. Then we implement
the dispatch registration to make the functions directly callable at
the PyTorch level. Our protection function can be applied to any
model by simply calling it after the identified critical layers.

5 EVALUATION
In this section, we evaluate the protection efficiency of FT2 and
compare it with several baselines. We also measure the inference
time and memory overhead of FT2. Besides, we discuss the sensitiv-
ity of protection efficiency under different datatype and hardware
configurations. We describe our experimental set-up, followed by
the evaluation results.

5.1 Experimental Set-up
All the experiments are performed on two hardware configurations.
The first consists of AMD EPYC 7742 64-Core CPU and NVIDIA
A100 GPU (Ampere architecture), running Rocky Linux 8.10 as its
operating system. The second is NVIDIA GH200 Grace Hopper
Superchip, consisting of NVIDIA Grace 72 Arm Neoverse V2 cores
CPU and NVIDIA H100 GPU (Hopper architecture) on Rocky Linux
9.3. Unless stated otherwise, results are based on A100 GPUs. The
reliability results are independent of hardware, as we evaluate in
Section 5.2.4.

We select generative tasks with definite correct answers includ-
ing question-answering (QA) and mathematical reasoning so that
the decision of fault injection experiment outcome (i.e., Masked or
SDC) can be automated. For generative tasks such as translation
and summarization, automating the semantic correctness checking
is difficult since there exist multiple correct ways of answering the

same question. We consider FP16 models as FP16 is faster than FP32
but has the same level of model quality. Table 2 shows the models
and tasks considered in this work. GPTJ-6B [67], OPT-6.7B [78],
and OPT-2.7B [78] models follow the model architecture shown
in Figure 1(a); the architecture of Llama2-7B [66], Vicuna-7B [14],
Qwen2-7B [70], and Qwen2-1.5B [70] models is the same as Fig-
ure 1(b). We consider SQuAD 2.0 [54] and Google XTREME [28]
for question-answering tasks. For math problem solving, we use
the GSM8K math problem solving dataset [15]. Note that among
these models, only Llama2-7B model and Qwen2-7B model perform
relatively well at answering math problems, thus only these two
models are considered for math problems. Due to the limited com-
putation resources and the substantial resource requirements of
tested generative LLMs, we randomly choose 50 inputs from the
set of inputs where all models produce correct outputs for these
questions. We performed 500 fault injection campaigns per input
(approximately ±0.00554% - ±0.368% error margins across differ-
ent models with a 95% confidence interval [32, 33]), amounting to
over 11 million fault injections (around 8000 GPU hours) for all
characterization and evaluation results.

To determine the token generation length, we evaluate the last
position of the correct answer for all fault-free outputs, which is 50
and 150 for QA and math, respectively. We extend the output length
to 120% to cover cases where fault-injected inferences generate
correct but longer answers. This results in generating 60 tokens for
QA tasks and 180 tokens for the Math task.
Baselines.We compare our method with several existing range-
restriction-based protection methods, including Ranger [12], Max-
iMals [57], and Global Clipper [60]. Ranger is implemented on
TensorFlow; the codes of MaxiMals and Global Clipper are not
publicly available and no implementation details are given. We
implement these three baselines on PyTorch to replicate their pro-
tection functionality. Due to the lack of implementation details,
we cannot replicate their runtime performance. Therefore, we can
only compare the resilience (i.e., protection effectiveness) of these
baselines, but not overhead. We also use FT2 with bounds obtained
from the expensive offline profiling to evaluate the effectiveness of
our first-token-inspired bounds. The bounds are obtained from 20%
of the training dataset, which is in line with prior works [12, 60].

5.2 Evaluation Results
We present our evaluation results starting from the overall effec-
tiveness and overhead. Then, we discuss the sensitivity of FT2 from
various aspects, including datasets, data types, and hardware.

5.2.1 Effectiveness: Overall SDC Rate.
Figure 13 shows the resilience of applying FT2 , compared with

all the baselines. A lower bar indicates the model is more reliable,

Table 2: Models and tasks for evaluation.

Model Name # of Parameters Task Type
OPT-6.7B [78] 6.66B QA
OPT-2.7B [78] 2.65B QA
GPTJ-6B [67] 6.05B QA
Llama2-7B [66] 6.74B QA/Math
Vicuna-7B (v1.5) [14] 6.74B QA
Qwen2-7B [70] 7.62B QA/Math
Qwen2-1.5B [70] 1.54B QA
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Figure 13: SDC rate comparison of FT2 against baselines. FT2 is effective in protecting generative LLM inference.

i.e., the protection is more effective. Each row represents a differ-
ent fault model, with results grouped by datasets within a row.
Our FT2 outperforms other baselines significantly in protection
effectiveness, achieving an average of 92.92% SDC rate reduction.

Among all baselines, Ranger performs the worst with an average
SDC rate of 2.83% since it only protects the activation layers, ig-
noring the critical linear layers. Global Clipper also suffers from an
average SDC rate of 2.61% because the critical linear layers in MLP
are not protected by it. MaxiMals decreases the SDC rate signifi-
cantly to an average of 0.81%, but it is not effective on Llama2-7B,
Qwen2-7B, and Qwen2-1.5B because MaxiMals does not protect
the critical UP_PROJ layers in these models. FT2 with and without
offline bound profiling achieve comparable SDC rates of 0.204% and
0.25% on average across all benchmarks, indicating the effectiveness
of the first-token-inspired approach employed by FT2 .

Overall resilience trends and observations hold under all three
fault models considered in this study. In particular, LLM inference
with 1-bit error exhibits the lowest SDC rates; the EXP model is
the most aggressive one with the highest SDC rates. After applying
FT2 , the SDC rate is significantly decreased considering all 3 fault
models. Even for the worst case of OPT-2.7B model with XTREME
dataset under EXP fault model, applying FT2 can reduce the SDC
rate from 9.79% to 0.27%, which is a significant improvement in fault
tolerance. Therefore, FT2 is demonstrated to successfully reduce
the SDC outcomes of generative LLM inference against different
fault types.

Considering different datasets, the average SDC rate on SQuAD
2.0 dataset after applying FT2 is 0.3%, which is almost the same
with XTREME dateset (0.31%). The SDC rate drops to 0.14% on
average for GSM8K dataset. Thus, FT2 can protect LLM inference
of different datasets and generative tasks effectively.
5.2.2 Efficiency: Execution Overhead.

Figure 14 shows the execution time overhead of applying our
protections. Experiments are performed on an A100 GPU and each
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Figure 14: Time overhead of FT2 on an NVIDIA A100 GPU.

experiment is repeated 1,000 times. There is no observable time
difference among those repeated experiments. On average, FT2
introduces 3.42% runtime overhead, which is lower than the 5.61%
runtime overhead of MaxiMals reported in their original paper [57].
Note that no overhead number is reported by Global Clipper. Even
for the worst case of OPT-2.7B models, the overhead is still less than
9% (8.91%). The execution time of each inference instance varies
from 1.35 to 6.4 seconds, while protection takes an addition of 32.5
to 127.5 milliseconds.

Memory overhead is negligible (288 - 512 Bytes, <0.2% for all
models) since only two bound values are stored for each layer. Each
model has around 72 - 128 protected layers counting all the layers
in different blocks.
5.2.3 Sensitivity to Data Types. We evaluate the effectiveness of
our protection on different data types, FP16 and FP32, as a case
study. Figure 15 shows the SDC rate comparison of protection
techniques when using FP16 and FP32, for OPT-6.7B and GPTJ-6B
models with SQuAD 2.0 dataset. After applying FT2, the SDC rate
drops to 0.14%, showing that FT2 is also effective in protecting FP32
LLM inference.
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Figure 15: SDC rate comparison of applying FT2 against baselines considering two data types, FP16 and FP32.
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Figure 16: SDC rate of applying FT2 against baselines for two hardwares, NVIDIA A100 and H100 GPUs.

5.2.4 Sensitivity to Hardware. As a case study, we evaluate the
protection effectiveness of FT2 on two different hardware configu-
rations with NVIDIA A100 and H100 GPU respectively. Here we
evaluate the OPT-6.7B model on SQuAD 2.0 dataset and the Qwen2-
7B model on XTREME dataset, and the SDC rates are shown in
Figure 16. Overall, the SDC rate of LLM inference on H100 is the
same as that on A100. After applying FT2, the SDC rate drops to
0.33% for H100, which is the same as A100, indicating the feasibility
of our method among different generations of NVIDIA GPUs. Since
FT2 is a software-level solution, we do not foresee any particular
issues of applying it to other hardware settings, such as CPUs and
AMD GPUs.

6 RELATEDWORK
There are plenty of studies focusing on measuring the reliability of
neural networks [2, 17, 19, 34, 35, 43, 50, 57], delivering insights for
the mitigation of soft errors. For transformers, Ma et al. combine
fault injection and algorithmic checksum to assess the resilience
of each component in transformer-based models [43]. Agarwal et
al. perform register-transfer-level fault injection to analyze the
reliability of LLMs on multiple tasks [2]. Roquest et al. perform
a beam test to measure fault effects on vision transformers [57].
Different from the above studies, our characterization study focuses
on criticality assessment and provides insights that guide the design
of protection methodologies.

Reliability protection of neural networks can be deployed at
different levels. Hardware protections such as Error Correction
Code (ECC) [25, 27, 61] are widely used in modern GPUs that per-
form single error correction and double error detection (SEC-DED).
Standard ECC cannot correct multi-bit errors and cannot cover
computation errors in logical units such as ALUs. At the software
level, Triple Modular Redundancy (TMR) is a standard technique
to improve resilience [47, 71]. Schmedding et al. selectively protect

weights in CNN models based on an important score [58]. Instead
of simply duplicating weights, Structural Coding adds linear combi-
nations of parameter groups to detect and mitigate errors with low
overhead [4]. Algorithm-based Fault Tolerance (ABFT) methods
are used to protect transformers by encoding a checksum into the
computation process [37, 38, 40]. The above methods provide high
reliability but with high overhead.

Several range-restriction-based protection methods are devel-
oped for neural networks [12, 57, 60, 76]. Ranger [12] protects only
the output of activation layers. Zhan et al. also restrict the value
of activation layers, but the protection target is to mitigate soft
errors in memory [76]. These two solutions are not fully adequate
for generative LLMs because critical linear layers exist. This is also
confirmed with the high SDC rate applying Ranger (see subsubsec-
tion 5.2.1). Designed for LLMs, Global Clipper [60] protects only
the output of linear layers in the attention block, wrongly ignor-
ing the critical layers in MLPs. MaxiMals [57] protects the output
of attention blocks and MLPs but ignores critical layers such as
V_PROJ and UP_PROJ. Besides the deficiency of protection, all ex-
isting range-restriction-based methods require costly profiling on
the training dataset to acquire bounds.

In contrast, FT2 identifies and protects all critical layers based
on our thorough characterization study. FT2 also performs online-
only protection instead of expensive offline profiling, leveraging
the bounds obtained during the first token generation. To our best
knowledge, FT2 is the first complete protection for generative LLMs
without offline profiling while achieving high reliability.

7 CONCLUSION
We demonstrate that existing resilience enhancement solutions
have fundamental limitations, for example, high overhead. State-of-
the-art range-restriction-based solutions offer negligible protection
overhead but have issues such as incomplete protection coverage
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and mandatory offline profiling as we point out. To address this, we
design FT2, a First-Token-inspired online Fault Tolerance method-
ology on critical layers for generative LLMs, offering high reliability
and low overhead. We thoroughly analyze the layer criticality based
on our extensive fault injection campaign with over 11 million ex-
periments and identify critical layers: a layer is deemed critical if
no scaling operation or activation layer is present before the next
linear layer. To achieve online protection, FT2 leverages a key in-
sight: the input of generating the first token is a subset of the input
of generating the following tokens for generative LLM inference.
Therefore, in FT2, bounds are profiled during the first token genera-
tion and then used to protect the generation of the following tokens.
We extensively evaluate FT2 across 7 LLMs and 3 datasets under 3
fault models. FT2 outperforms the existing protection mechanisms
and achieves 92.92% SDC rate reduction with only 3.42% overhead
on average.
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