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Abstract—Convolutional neural networks (CNN) are incor-
porated into many image-based tasks across a variety of do-
mains. Some of these are safety critical tasks such as object
classification/detection and lane detection for self-driving cars.
These applications have strict safety requirements and must
guarantee the reliable operation of the neural networks in the
presence of soft errors (i.e., transient faults) in DRAM. Standard
safety mechanisms (e.g., triplication of data/computation) provide
high resilience, but introduce intolerable overhead. We perform
detailed characterization and propose an efficient methodology
for pinpointing critical weights by using an efficient proxy, the
Taylor criterion. Using this characterization, we design Aspis,
an efficient software protection scheme that does selective weight
hardening and offers a performance/reliability tradeoff. Aspis
provides higher resilience comparing to state-of-the-art methods
and is integrated into PyTorch as a fully-automated library.

Index Terms—Soft Errors, ML Classification Models, Software
Protection, Error Resilience

I. INTRODUCTION

Convolutional neural networks (CNNs) are ubiquitous, es-
pecially in image-based tasks such as image classification
and object detection. When used in safety critical applica-
tions, such as self-driving cars or adaptive driver assistance
systems, their reliability requirements are strict. Autonomous
vehicles typically process a continuous inflow of telemetry
from cameras, radar, and other sensors to accurately perceive
the environment surrounding the vehicle [1]. Consequently,
classification accuracy is critical as it affects system safety
requirements that are in place to avoid hazards and accidents.

Significant portions of CNNs typically reside in DRAM that
is susceptible to soft errors (i.e., transient hardware faults) due
to cosmic radiation [2], shrinking transistors, and operating
under low voltage [3]. With SEC-DEC error-correction coding
(ECC), single-bit faults are correctable and double-bit faults
are detectable. A double-bit fault is detected as DUE (Detected
Uncorrectable Error) and the program stops. This is not ad-
visable for safety critical applications. While past studies have
shown that double- and multi-bit faults are rare comparing to
the ubiquitous single-bit faults [4], multi-bit faults in recent
DRAM technologies (DDR4) are shown to be as ubiquitous
as single-bit ones [5] and can disrupt system operation [6].
Error correction codes such as Chipkill [7] can correct single-
and multi-bit faults but at prohibitive cost.

In the specific domain of image recognition using CNNs,
a triggered multi-bit fault in DRAM during inference can

OpenPilot [8] Apollo [9]
# Convolution Layers 70 413

# Weights 5,811,616 74,349,986
# Single-Bit Fault Sites 185,971,712 2,379,199,552
# Double-Bit Fault Sites 5,765,123,072 73,755,186,112
# Triple-Bit Fault Sites 172,953,692,160 2,212,655,583,360

TABLE I: Fault space of the convolution layers in OpenPilot
and Apollo. Multiple neural networks are used in these systems
(e.g., 19 NNs in Apollo). These are the collective numbers.

be masked if the resulting classification is not altered, or
a well-trained network may give an unexpected erroneous
misclassification. In certain domains such as automotive or
healthcare applications, misclassifications can be catastrophic.

In this paper we shed light onto neural network resilience
during inference in the presence of bit flips (soft errors) on
the weights of the convolution layers of neural networks.
CNNs are ubiquitous in autonomous vehicle (AV) software
and are used for perception and control. Table I illustrates
the fault space of Openpilot, an adaptive driver assistance
system (ADAS) [8] and Baidu Apollo [9]. The table shows that
exhaustive exploration of the soft error space in AV software
is not feasible: the number of fault sites is beyond the order of
billions, requiring thousands of years of experiments. Clearly,
there is a need for an efficient approach to identify the location
of critical faults and understand their impact.

Here, we aim to solve a piece of this puzzle: since CNNs
are important parts of larger software, we aim to identify
their resilience to soft errors in the weights of filters in their
convolution layers. A broader analysis of the effect of soft
errors on other components such as input buffers and activation
layers is outside the scope of this work.

The first research question is to identify the relative impor-
tance of weights: are bit flips that occur in certain weights
more important for classification than others? Identification of
such weights even in stand-alone CNNs of smaller scale com-
paring to those of Table I is still very challenging. Consider
the VGG19 network [10] that has 16 convolution layers with a
total of 20+ million weights that are typically saved as 32-bit
floating point values. Exhaustive analysis of such a vast fault
to evaluate the effect of a single-bit flip requires 640 million
experiments, this number grows to more than 19 billion for
multi-bit flips, see Table II.

Since pinpointing vulnerable weights via exhaustive search
is infeasible, we evaluate the relation of “weight impor-
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Fig. 1: Convolution layer in a CNN. Weights for a layer are
a 4D tensor, depicted here as a series of 3D tensor slices.

tance” [11, 12, 13, 14] to NN reliability. Our experiments
show that weights of high importance are an excellent proxy
for CNN reliability assessment since a hardware fault affecting
those weights almost always results in misclassification. We
tested this proxy within CNNs incorporated in AV software
and showed that high-importance weights can quickly identify
corner cases of AV safety: soft errors on weights of high-
importance can result in hazards and accidents [15].

Based on the above observation we propose Aspis1, a
neural network hardening framework that provides protec-
tion/hardening to high-importance weights in the presence of
single- and multi-bit faults. The proportion of weights that
are protected is left to the user and can be adjusted to find
a desirable performance/reliability trade-off. Aspis provides
superior resilience comparing to Ranger [16], a state-of-the-
art framework that corrects errors in weights by restricting the
ranges of the network activation layer. The overhead of Aspis
is comparable to that of Ranger. In sum:

• We show that leveraging weight importance as a proxy to
characterize NN reliability can be used to strike a balance
between reliability and performance trade-offs. In addi-
tion, we show that weight importance can help identify
corner cases that are important for safety applications.

• We perform extensive validation of weight importance
as a proxy for reliability by running more than 26,000
experiments which total more than 1 billion inferences
and more than 6 years of machine hours.

• We implement Aspis and integrate it into PyTorch as a
fully automated library. Aspis is released publicly [17]
and can be seamlessly integrated into existing NN models
without additional developer effort.

II. BACKGROUND

Convolutional neural networks (CNNs) are widely used
in image-based tasks, including autonomous driving systems
for perception and control. For image classification, input is
typically an image represented as a 3D tensor (i.e., a 3D
matrix) of RGB values for each pixel. The output of the CNN
is a label corresponding to the image class.

Typically images are fed into the CNN model as batches.
The defining feature of a CNN is the convolution layer.
Convolution layers are represented as tensors of weights and
are used to perform the computationally intensive convolution
operation. A visualization of the weights in a convolution layer

1Aspis is a wooden shield used by the infantry in Ancient Greece. Its high
performance is attributed to its shape, which allows it to be supported on the
shoulder and be easily used in battle.

can be seen in Fig. 1. These weight tensors are typically a
4D tensor consisting of many filters. Each filter has several
kernels and each kernel is a matrix of weights. In the example
in Fig. 1, the convolution layer consists of several filters and
each filter is made up of three 3 × 3 kernels. The convolution
operation traverses the convolution kernels of weights over
the whole input tensor to perform computation. In addition
to convolution layers, CNNs have activation layers that apply
a function such as ReLU, pooling layers (e.g. max pooling,
average pooling), dropout layers, fully connected layers, and
softmax layers, among others. The softmax layer is the final
layer in classification networks which ultimately determines
the most probable label for the input image.

In this paper we consider three image classification CNNs:
VGG19 [10], ResNet50 [18], and Inception v3 [19]. These are
commonly used CNNs with pre-trained models available via
PyTorch [20]. Table II shows the number of layers and weights
in these CNNs. As an example, the structure of VGG19 is
shown in Fig. 2. The smallest convolution layer contains 1,728
weights while the largest contains 2.3 million weights. The
smallest and largest layers of ResNet50 contain 4,096 weights
and 2.4 million weights. For inception v3, the number of
weights in layers ranges from 864 to 1.5 million.

Data sets. Multiple versions of the above CNNs are avail-
able through PyTorch and are pre-trained on different data
sets. Here, we consider the ImageNet [21] and CIFAR-10 [22]
datasets. Table III shows the test set size and the number of
labels the network has to choose from for these two data sets.

A. Fault Injection and Fault Model

We use fault injection experiments to evaluate CNN re-
liability. We simulate commonly occurring transient faults
(soft errors) in DRAM (Dynamic Random Access Memory).
We assume that the standard SEC-DEC error correction is
deployed in DRAM, which enables single-bit error correction.
Consistent with other reliability studies [23, 24], we consider
two fault models: 1) a double-bit fault model and 2) a triple-
bit fault model. A fault site is located using its layer ID and
weight ID. We perform fault injection in PyTorch on pre-
trained PyTorch neural networks by first selecting a fault site,
then flipping two (three) randomly selected bits in the float32
value for this weight, and finally updating the weight in the
neural network with the new corrupted value.

To assess CNN resilience, we measure the misclassification
rate of inference with the fault-injected model, i.e., among the
images that are correctly classified by the fault-free model,
we calculate the percentage of images that are misclassified
due to the injected faults. We use only correctly classified
images in order to distinguish between algorithmic-intrinsic
errors and errors caused by bit-flips. For one fault injection
run, the inference is performed on the set of all images that
are correctly classified by the fault-free model, in other words,
the fault-free model accuracy is 100% on this subset.

Note that a misclassification from the fault-injected model
in one fault injection run only denotes the resilience of that
location of the fault injection, i.e., the vulnerability of that



Model # Weights # CONV # Single-Bit Fault Sites # Double-Bit Fault Sites # Triple-Bit Fault Sites
Layers (ECC correctable) (ECC detectable; not correctable) (Not detectable; not correctable)

ResNet50 23,454,912 53 750,557,184 23,267,272,704 744,552,726,528
Inception V3 21,751,136 94 696,036,352 21,577,126,912 690,468,061,184

VGG19 20,018,880 16 640,604,160 19,858,728,960 635,479,326,720

TABLE II: Convolutional Neural Networks (CNNs) considered in this work.
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Fig. 2: VGG19 model architecture and the number of weights in each convolution layer.

Dataset Size (Test) Labels
Imagenet 50,000 Images one of 1,000 categories
CIFAR-10 10,000 Images one of 10 categories

TABLE III: Datasets.
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Fig. 3: Workflow of TMR: simple, but not effective.

specific site to bit flips. To evaluate the resilience of the
whole CNN, one should perform exhaustive fault injection
experiments on every fault site. We establish that this is not
doable: Table II shows that the number of double- and triple-
bit faults are in the order of trillions. Thus, it is impossible to
perform 100% reliability coverage (i.e., evaluate all weights
to assess their criticality for classification in the presence
of faults). Fault injection campaigns are usually based on
statistical sampling [25, 16, 26, 27] 1000 experiments (one per
fault site, each randomly selected) are done to obtain results
with 95% confidence intervals and ±3% error margins [26].
Statistical fault injection cannot be used to identify which are
the critical weights for classification.

B. Standard Protection Mechanism

Triple Modular Redundancy (TMR) is based on data repli-
cation and is the standard hardening technique to ensure
application resilience [28]. Here we briefly describe the work-
flow of TMR in the context of CNNs, where all weights
are triplicated, see Fig. 3. At the initialization phase, two
additional PyTorch tensors per layer are duplicated in memory
to provide triplication. Next, for each batch of images in the
inference phase, TMR first checks that the weight tensors are
correct based on a majority voting scheme. If the tensors do
not all agree, the fault is corrected via majority voting. If all
three copies of the tensor differ, TMR still detects the error.
Although TMR achieves high reliability, it comes with high
overhead. We show the detailed overhead in the next section
that motivates the idea of Aspis.

III. MOTIVATION

The problem of protecting CNNs from soft errors includes
two primary challenges: how to protect, and what to protect.

In this section, we motivate Aspis by evaluating TMR. We
show that TMR has overhead that is unacceptable within
resource-constrained contexts, confirming that the question
of how to protect must be addressed. We also investigate
techniques for finding which parts of the CNN need protection,
and show the shortcomings in the accuracy of finding these
components, indicating that the question of what to protect
must be addressed. This leads to Aspis, our software solution,
discussed in Section IV.

A. TMR Implementation

Implementing basic TMR is straightforward, but has a sig-
nificant downside: the runtime overhead is intolerable, see the
black bars in Fig. 4 that range from 11 to 12 hours evaluating
the entire dataset. On top of each bar, we report on the runtime
overhead as a percentage increase without TMR. Without
TMR, VGG19 takes around 10 hours due to its large layer size;
Inception v3 and ResNet50 take 4–6 hours. Figure 5 reports
the memory overhead of TMR, see black graphs. Applying
TMR adds 121%–299% increase in runtime (depending on
the CNN and dataset) and around 240MB memory overhead,
rendering TMR impossible in environments with strict latency
requirements, even though its memory overhead is acceptable.
Motivation #1: The standard TMR implementation intro-
duces tremendous runtime overhead.

B. TMR-Sparse Tensor Implementation

In order to remedy the high runtime overhead problem
of TMR, we alter the implementation to utilize the sparse
tensors provided by PyTorch to a runtime-optimized protection
that we call TMR-sparse. The original tensor of weights
remains a dense tensor, but the two additional copies are sparse
tensors populated with non-zero weights utilizing the coordi-
nate format for sparse tensors in PyTorch. Applying TMR-
sparse shows significant improvement: the runtime overhead
is dramatically improved, see the red bars in Fig. 4. While the
latency of TMR-sparse is acceptable, it regretfully suffers from
high memory overhead (around 2.2 GB, which is about 9x the
memory overhead of TMR), see red bars in Fig. 5. TMR-
sparse suffers from memory overhead here because it can not
efficiently take advantage of the sparsity when performing full
triplication. There is a natural tradeoff between the sparse
and dense tensor formats – additional information stored for
sparse tensors is small when the number of elements in the
sparse tensor is small, but when the number of elements in



Model Min 25% 50% 75% Max Min 100 Cutoff Max 100 Cutoff
VGG19 1.73 ∗ 10−9 4.89 ∗ 10−3 1.04 ∗ 10−2 1.80 ∗ 10−2 1.14 1.04 ∗ 10−7 0.52

Inception v3 0 5.21 ∗ 10−3 1.14 ∗ 10−2 2.11 ∗ 10−2 1.27 0 0.66
ResNet50 0 4.01 ∗ 10−3 8.72 ∗ 10−3 1.56 ∗ 10−2 9.88 ∗ 10−1 0 0.48

TABLE IV: The distribution of weight magnitude per model for the ImageNet dataset.
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Fig. 4: Runtimes for TMR and TMR-sparse. Runtime %
overhead versus the CNN execution without protection is also
given. Note that we evaluate the entire dataset as input, i.e.,
we do not report on the inference of a single image or batch.
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and TMR-sparse versus the CNN without protection.

the sparse tensor is very large, this extra information degrades
memory performance. Therefore, to reduce memory overhead,
we cannot blindly triplicate to take advantage of the useful
properties of sparse tensors.
Motivation #2: TMR and TMR-sparse result in unacceptable
performance overheads.

C. Weight Magnitude and Weight Importance

Having established that protecting the entire set of CNN
weights results in a low-performance solution, we entertain
whether it is reasonable to protect only the portion of the most
important weights for classification. We therefore need a fast
but efficient proxy to identify critical weights.

It is well-known that the weight value, especially its magni-
tude, contributes to CNN accuracy and resilience [29]. Weight
magnitude is an easy-to-characterize choice for evaluating the
importance of weights. We investigate if this is a good metric
for determining the criticality of weights. We perform a brief
characterization of the weight magnitude, see Table IV for the
distribution of weight magnitudes in CNNs.

0 20 40 60 80 100
Percent Misclassification (Criticality)

0

20

40

60

80

100

Pe
rc

en
t o

f E
xp

er
im

en
ts ResNet50

Random FI
Low Magnitude
High Magnitude

Ra
nd

om
Hi

gh
 M

ag
Lo

w 
M

ag

0

20

40

60

80

100

Cr
iti

ca
l W

ei
gh

ts
 F

ou
nd

 (%
)

2.02 4 0

Fig. 6: Fault injection based on weight magnitude for
Resnet50. Magnitude is insufficient for finding critical weights.

As a motivating example, we select the top-100 high-
magnitude weights (noted as High Mag) and top-100 low-
magnitude weights (noted as Low Mag) to perform fault
injection experiments. We present the fault injection results
for a random sampling campaign of 1000 fault sites. Fig. 6
shows the fault injection results: most experiments result in
very few misclassifications. These FI campaigns find at most
4% critical weights. Thus, weight magnitude is insufficient for
identifying weights that need protection.
Motivation #3: Weight magnitude is not a good proxy for
identifying critical weights.

IV. ASPIS : END-TO-END HARDENING WITH
LOW-OVERHEAD

We present our methodology to pinpoint the vulnerabilities
in CNNs by leveraging as proxy, the importance score of
individual weights [11, 12, 30]. Using this proxy, we classify
weights as “vulnerable” when faults in them result in mis-
classification, versus “less vulnerable” that have low impor-
tance in classification and can consequently absorb faults. We
propose to selectively protect weights ranked by their impor-
tance (i.e., those that are deemed most vulnerable) and design
Aspis, an end-to-end CNN hardening framework integrated
with PyTorch [17]. Aspis effectively protects CNNs from soft
errors while keeping runtime and memory overhead low.

A. Weight Importance Score as a Reliability Proxy

Weight Importance Score Characterization. Bit flips in
critical weights can lead to silent data corruptions, which may
eventually result in misclassification. Since examining every
fault site in the exhaustive fault site space is not feasible,
we utilize the importance score of each weight, a numerical
value used to assess the importance of the weight to the
classification output. We use this score to rank weights in
order of their criticality and provide selective protection only
to the most critical weights. Molchanov et al [11] calculate
each filter’s importance using the first-order Taylor expansion
to approximate the squared difference in prediction accuracy



Fig. 7: Heatmap of VGG19 weight importance scores for
ImageNet. The x-axis represents the layer ID and the y-axis
the weight ID. The importance score of each weight ranges
from low importance (light blue) to high importance (red).
Most of the weights are not important; the red spots in the
zoomed-in windows are weights with high importance score.
The heatmap for VGG19 with the CIFAR-10 data set is similar
(not shown due to lack of space).
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Fig. 8: Layer-wise distribution of top-1% and bottom-1%
important weights in VGG19 for two different datasets.

without that filter. We modify this method to operate at a
finer granularity, and calculate the importance of each weight
instead of each filter. The importance of a weight using this
expansion simplifies to the following equation:

I(1)m (W ) = (gmwm)2, (1)

where I is the importance, W is the set of network parameters,
gm are elements of the gradient, and wm are the weight values.

We use this modification to determine the estimation for
each weight, record these values as importance scores, and
use them to rank weights by their criticality in classification.
Because this calculation is based on the weights and gradients
which vary depending on the data set used for training and test-
ing, we examine networks using both the ImageNet [21] and
CIFAR-10 [22] datasets. Note that the methodology presented
in this paper is independent of the method used to calculate
importance scores. Our methodology can be combined with
any other method for importance score calculation, such as
Neuron Importance Score Propagation [12].

Fig. 9: Inception v3 importance scores for ImageNet.

The distribution of importance scores across different layers
for VGG19 with ImageNet is shown in Fig. 7, organized by
the layer ID (horizontally) and weight ID (vertically). The
light blue in the heatmap indicates that most of the weights
are classified as not important. We showcase two zoomed-in
windows on the right side, where the red spots are weights with
high importance scores. Overall, there are very few important
weights which are visible (unless zooming in).

We are also interested in the location of important weights
across different layers. Fig. 8 shows the number of important
weights in different convolutional layers of VGG19. From
the top figure in Fig. 8 which shows the top 1% important
weights, most of them are in the early layers, as also observed
in the literature [31]. Note that since the first three layers
are small, the number of important weights in these layers
is also small. Percentage-wise, the vast majority of weights,
95.8% and 99.4% in the first layer are classified as critical for
the network trained on ImageNet and CIFAR-10 respectively,
further showing the importance of early layers. This layer-wise
pattern is seen for both ImageNet and CIFAR-10 datasets, but
there is not a complete overlap in important weight locations
for networks trained on different datasets. This shows that
important weight locations are dependent on both the network
structure and the datasets used for training and testing.

Fig. 9 and Fig. 10 depict a heatmap and layer-wise distri-
bution of the top-1% and bottom-1% important weights in
Inception v3 on the ImageNet dataset. Similar to VGG19,
important weights are not necessarily close to one another
(Fig. 9), and may be in any part of the network, but most
critical weights are in the first few layers (Fig. 10). Comparing
the two data sets, Inception v3 trained on CIFAR-10 has
a larger spike of critical weights in early layers than on
ImageNet, showing that important weights in Inception v3
trained on ImageNet are more spread out. However, the least
important weights for Inception v3 on both data sets are very
similar and are concentrated towards the end of the network.

Fig. 11 shows the heatmap of weight importance scores
for ResNet50 with the ImageNet dataset. Similar to VGG19
and Inception v3, critical weights are spread out and difficult
to locate. However, Fig. 12 shows an interesting difference
between the two data sets. While the two data sets for
VGG19 and Inception v3 tend to show that the location of
the most important weights are located in the same layers,
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Fig. 11: ResNet50 weight importance scores for ImageNet.

the important weights in ResNet50 are distributed differently
across different layers. ResNet50 trained on CIFAR-10 has a
high concentration of important weights in early layers, but
on ImageNet, these are concentrated later in the network. The
least important weights for the network for CIFAR-10 are
towards the end layers, but the least important weights for
ImageNet are concentrated to three spikes. This shows that
the data set used for model training has strong influence on
the location of important weights.

Across all three models, there are many critical weights in
the early layers, however, critical weights can be present in
any layer, indicating that it is important for any protection
mechanism for CNNs to account for critical weights in all
layers. Models which are trained on different data sets contain
different critical weights, meaning that protection mechanisms
must locate and account for the critical weights present in
models based both on structure and the data set for that use-
case. As data sets continue to evolve, models will be re-trained
with new data and it is necessary that these models with new
weights can be evaluated.
Summary. Critical weights dependent on both model struc-
ture and data set. The layer location (early/later layers) is not
necessarily a good indicator of the weight importance.

Importance Score as a Resilience Proxy. Here we consider
three sets of fault injection experiments:

1) Random fault injection: We do 1,000 double-bit fault in-
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Fig. 12: Layer-wise distribution of top-1% and bottom-1%
important weights in ResNet50 for two different datasets.

jection experiments on randomly selected weights from
all all layers in the network, to obtain 95% confidence
intervals with ±3% error margins [26];

2) Fault injection in high-magnitude weights only as in
Section III.

3) Importance score-guided fault injection: here, faults are
injected in the top-500 most important weights.

For all three sets of experimental campaigns, we perform
inference on every image of Imagenet that is classified cor-
rectly in the golden (fault-free) run of the model. This allows
us to examine misclassifications of different CNNs on the
same scale. Results for fault injection in VGG19 are shown
as histograms in Fig 13(a). Because the fault space is so large
and so few weights are critical for resilience, random fault
injection does not give a clear picture of CNN resilience. The
percent misclassification (y-axis) refers to the misclassification
caused specifically by fault injection. Without the injected
fault, none of these misclassifications occur. As shown in the
gray bar in Fig 13(a), few experiments (5.3%) find weights
whose corrupted values lead to near 100% misclassification.
Recalling the heatmap of weight importance scores in Fig. 7,
most of the weights are not important. This explains why
random sampling cannot capture the effect of critical weights.
Instead, most weights selected in random fault injection lead
to negligible reduction in accuracy, i.e., they are not critical.
Similarly, experiments based on weight magnitude (blue bars)
do not tend to find critical weights and result in less than
10% misclassifications. The red bars in Fig. 13(a) show the re-
sults of importance score-guided fault injection. Most weights
(98%) from the top-500 importance scores are found to be
critical, i.e., fault injections there result in misclassifications.
Although weight importance score is not a perfect proxy
for resilience estimation, it correctly captures more critical
weights (490) than random fault injection (53) in half as many
experiments. Most of the critical weights are located in the
early layers of the network, however the importance score does
accurately capture critical weights in later layers. In short, the
critical weights in later layers indicate that a coarse-grained
layer-wise protection is insufficient for protecting the network.

Similar observations are found in Inception v3. Fault in-
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(a) VGG19 fault injection results.
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(b) Inception v3 fault injection results.
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(c) ResNet50 fault injection results.

Fig. 13: Misclassifications for random FI, magnitude-based FI, and importance-based FI for the three CNNs and the Imagenet
dataset. Higher values on the x-axis mean worse accuracy.

jection results for Inception v3 are shown in Fig 13(b). The
random fault injection campaign finds few critical weights
(2.7%) and the magnitude-based FI also finds an insufficient
quantity of critical weights. On the other hand, the importance
score-guided fault injection corroborates the claim that the
weight importance score can be used as a efficient proxy for
critical weights. Of the weights classified as critical using
importance scores, 65.4% are indeed found to be critical.
Interestingly, 23% do not have near 100% misclassification
and also do not have near 0% misclassification (These have
between 5% and 28% misclassification). This means that the
importance score captures moderately important weights in
addition to the critical weights. These moderately important
weights cannot be located with random fault injection.

Results of fault injection in ResNet50 are shown in the his-
togram in Fig. 13(c). The random fault injection experiments
in the gray bars in Fig. 13(c) show that most experiments have
near zero percent misclassification, i.e., most of these weights
are not critical. Experiments based on weight magnitude (blue
bars) also fail to locate many of the critical weights. A small
percentage (4%) of weights are critical weights with near 100
percent misclassification. On the other hand, the importance
score-guided fault injection (red) correctly classifies 71.4%
of candidate weights as critical. Similar to Inception v3,
the importance score method also manages to capture some
moderately important weights in addition to critical weights.

We performed the same set of experiments on the CIFAR-
10 dataset. Results are not presented here due to lack of space
but we confirm that they are qualitatively the same as those
that are presented in Figure 13.
Summary. Random sampling is insufficient for locating
critical weights, especially in the presence of a limited time
and resource budget. Weight importance scores are a good
proxy for detecting weights which are likely to be critical
for neural network reliability.

B. Aspis : Design and Implementation

Here we present an end-to-end hardening framework, Aspis,
that provides fast and efficient protection to CNNs with
minimal software engineering effort in order to facilitate the
development and deployment of resilient CNNs in safety-
critical domains. An overview of the entire framework can

be seen in Fig. 14. This framework has two primary phases:
offline analysis and online protection.
Offline analysis. The offline analysis phase performs the
classification of critical weights by calculating importance
scores and by recording these critical weight indices for
online protection. This step is performed after the model is
trained but before it is used in production. This step takes the
trained model and test dataset as input and generates a list
of critical weight indices as output. In our implementation,
we use importance scores generated by utilizing the Taylor
approximation calculations, as described in Section IV-A. We
stress that weight importance analysis is not reliant on the
Taylor approximation; any importance score calculation may
be used.

Based on the generated weight importance scores, Aspis
uses a threshold to determine the level of protection. In this
work, later in the evaluation section, we select 100%, 10%, and
1% as three use cases, but Aspis can protect any percentage
of weights. Essentially, Aspis-x% implies that x% of the
weights are protected. Such partial protection is consistent
with hardening techniques in the GPU domain: partial data
replication of the most frequently accessed/shared data [32]
or partial replication at the thread level [33]. Note that Aspis-
100% is identical to TMR-sparse which protects all weights.
Online protection. Based on the profile of critical weights
generated from offline analysis, only critical weights are
protected when performing inference online. This step is per-
formed during the usage of the model in production. Similar
to TMR, triplication happens at the initialization phase, but
Aspis only triplicates weights with high importance scores.
Moreover, for the fault checking at the beginning of each batch
inference, only weights of high importance score are checked
and corrected if any errors are detected. These important
weights are stored in two additional sparse tensors alongside
a sparse tensor mask,2 denoting the locations of the important
weights for easy comparison.
Software Implementation. The implementation of Aspis

2In order to compare the whole dense tensor to the sparse tensor partial
copy, we apply a mask to the dense tensor to only compare the critical weights.
The indices of the mask are used to filter out the critical weights in the original
tensor. The mask itself is a tensor. When the mask is applied to the original
tensor, it should output a sparse tensor identical to sparse copy1 and sparse
copy 2. sparse mask() is part of PyTorch.



for layer in model.modules():
  if isinstance(layer, torch.nn.Conv2d):
    weights = layer.state_dict(keep_vars=True)['weight’]  # get weights 
    weights.check_triplication_sparse()
output = model(images)  # inference

Low-importance-score Weights

High-importance-score Weights
Taylor Criterion

Model

Data Set

Importance Score
of Weights

Initialization (Triplication)

Low-importance-score Weights

High-importance-score Weights
High-importance-score Weights
High-importance-score Weights

Inference

Check for Faults
(Majority Voting)

High-importance-score Weights:

Inference

Correction
Detected

Fault-free

conv_layer_idx = 0
for layer in model.modules():
  if isinstance(layer, torch.nn.Conv2d):  # get convolution layers
    weights = layer.state_dict(keep_vars=True)['weight']  # get weights
    weights.protect_triplication_sparse(important_locs[conv_layer_idx])
    layer.state_dict(keep_vars=True)['weight'] = weights
    conv_layer_idx += 1

python implementation
Online Protection

Offline Analysis

$ python main.py --model=resnet50 --dataset=Imagenet <other_params>

Profile

Fig. 14: Aspis workflow.

focuses on high performance and usability. The underlying
implementation of the sparse tensor selective triplication is
performed in the Tensor class and can be integrated into
PyTorch as a new feature. In the offline analysis phase,
users are able to get the profile of critical weights with
one command. Then, adding the online protection typically
requires several lines of code. The sample code is shown in
Fig. 14. For initialization, weights are updated with the sparse
tensor information by calling the protect triplication sparse
function. Before inference, function check triplication sparse
performs error detection and correction. No advanced knowl-
edge of reliability and neural networks is required to apply
Aspis. Aspis can be downloaded at [17].

V. PERFORMANCE OF ASPIS

In this section, we focus on measuring the runtime over-
head and memory overhead of Aspis. First, we describe our
experimental setup, then present the main evaluation results.

A. Experimental Set-Up

We apply Aspis on the VGG19, Inception v3, and
ResNet50 models with the ImageNet and CIFAR-10 data sets.
There are three settings, Aspis-1%, Aspis-10%, and Aspis-
100% protecting the top 1%, the top 10%, and all critical
weights, respectively. Aspis-100% is effectively TMR-sparse.
All experiments are executed on a dedicated server with an
Intel Xeon E5-2643 CPU and an NVIDIA Titan RTX GPU.
We use the recommended batch size for each model (256 for
VGG19 and 512 for ResNet50 and Inception v3).

B. Resilience Comparison to the State-Of-The-Art

Ranger [16] is a state-of-the-art fault corrector that employs
range restriction on neuron activation layers to protect NN
models from faults. Each restriction has a pair of minimum
and maximum activation values to use as bounds, which are
set after profiling input data. This step is performed once,
before the deployment of the protected model with Ranger.
When Ranger is active, any activation values outside the ranges
defined by Ranger are clipped to the profiled bound.
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Fig. 15: Fault injection in weights selected randomly. Note
that the y-axis starts from below zero, to illustrate a bar for
those that achieve 0% misclassifications.

ImageNet CIFAR-10 ImageNet CIFAR-10 ImageNet CIFAR-10
   VGG19                                 Inception_v3                              ResNet50

0

20

40

60

80

100

Pe
rc

en
t o

f E
xp

er
im

en
ts

Re
su

lti
ng

 in
 M

isc
la

ss
ifi

ca
tio

n

82
.1

%
71

.4
%

0% 0% 0% 5.
4%

44
.1

%
35

.6
%

0% 0% 0% 4.
2%

72
.6

%
65

.4
%

0% 0% 0% 4.
4%

40
.8

%
28

%

0% 0% 0% 3.
8%

83
.7

%
71

.4
%

0% 0% 0% 6.
6%

36
.6

%
25

.8
%

0% 0% 0% 3.
0%

No Protection Double Bit
No Protection Triple Bit

Aspis-100%
Aspis-10%

Aspis-1%
Ranger

Fig. 16: Fault injection in the most important weights. Note
that the y-axis starts from below zero, to illustrate a bar for
those that achieve 0% misclassifications

We perform fault injection experiments to evaluate Aspis-
1%, Aspis-10%, Aspis-100%, and Ranger, using three CNN
models (VGG19, Inception v3, and ResNet50) with both the
ImageNet and CIFAR-10 data sets on double-bit and triple-
bit fault models. We consider two fault injection scenarios:
randomly selected weights and weights of high importance.
The same set of faults (i.e. the same bit positions in the
same weights) is used for both Aspis and Ranger. Since
these experiments focus on specific weights, it allows for
direct comparisons between the two protection schemes and
statistical comparison is unnecessary.
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Fig. 17: Runtime overhead for protection.

Fig. 15 shows that if faults are selected randomly, then Aspis
has similar success on correcting them since it only protects
critical weights. Fig. 16 shows the results when injecting faults
into critical weights. Since Aspis protects the weights where
fault injections occur, all models have zero misclassifications.
Ranger performs well overall but a small percentage (3%
to 6.6%) of fault injections result in misclassifications. Both
figures show that triple-bit faults result in more errors than
double-bit faults, which is consistent with the literature [24].
Protection with Aspis or Ranger is exactly at the same level
irrespective of the number of bit flips.

C. Runtime Overhead

The runtime overhead of Aspis is shown in Fig. 17 with
a comparison across TMR and Ranger. Runtime overhead
is calculated as the percent of additional time required for
protection compared to the model with no protection. Note
that when measuring overhead, all images in the ImageNet
and CIFAR validation sets are included as input images, in
contrast to the fault injection experiments which only use
correctly classified images. We focus on the runtime over the
whole dataset because the different steps are not performed the
same number of times in practice – initialization (an expensive
step) is performed only once, but we check correctness many
times in the inference phase, so including the whole dataset of
inferences provides a more concrete view of the total overhead
cost for an application.

Results are presented with 95% confidence across 50 ex-
periments each to accurately capture the runtime. Note that
in Fig. 17 the error margins are less than one second, so the
error bars are not visible. As we also show in Section III,
TMR exhibits tremendous runtime overhead, which is more
than 11 hours for all the CNN models and datasets. Recall
that our benchmark is inference of the entire dataset. This is a
runtime increase between 121% and 299% (see black bars in
Fig. 17 ). Instead, Aspis and Ranger have acceptable negligible
runtime overhead from 1.1% to 4% only. In general, Aspis
takes advantage of the sparse tensor structure by protecting
only the most critical weights. Aspis-100% is naturally more
expensive since it protects everything and is therefore using a
dense tensor in sparse format.

For Aspis, we also opt to a detailed breakdown of the
overhead for easier comparisons and understanding. Fig. 18
presents the detailed breakdown of the runtime overhead:

• Initialization, where weights are triplicated;
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Fig. 18: Runtime overhead of Aspis: detailed breakdown.

• Checking correctness of the weights when no errors are
detected;

• Checking correctness of the weights when errors are
detected and corrected (if correction is possible).

Comparing these three cases, the initialization step has the
highest overhead, but this is only a one-time overhead spent
prior to any inference. The initialization overheads of Aspis-
1% and Aspis-10% are much lower than Aspis-100% because
the amount of data to be processed is different. Checking the
correctness of a layer of weights is performed once per batch
during model inference. The overhead of this check is shown
in Fig. 18(b). Overhead is presented per layer per batch. As
expected Aspis-1% and Aspis-10% have the least overhead.

If the check fails, then error detection/correction is trig-
gered. This step is performed immediately after the check,
between inferences of two batches. For a detected error and its
correction, the overhead is similar regardless of the protection
scheme, however protection schemes that make better use of
the sparsity tend to perform better than those that cannot.
For correction of an error in a sparse copy, we correct the
error with the other sparse copy which is a fast operation. For
correcting the main tensor, we utilize one of the copies along
with the masked tensor to correct the incorrect value using
subtraction. This a fast operation, although correcting the main
tensor is slightly more time-consuming than correcting one of
the copies. Detecting an uncorrectable error is fast, because
there are no steps we can take to correct any tensors, and
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Fig. 19: Memory overhead for protection.

Protection Runtime Overhead Memory Overhead
Structural Coding [25] 3.5% 14.1%

Aspis-100% 4.0% 15.6%
Aspis-10% 1.6% 1.6%
Aspis-1% 1.4% 0.15%

TABLE V: Overhead comparison w/ Structural Coding [25]
on the ResNet50 model with the ImageNet dataset.

performing the comparison steps alone is fast. This is clearly
illustrated in Fig. 18(c), where the cost is less than 0.0008
seconds in all cases.

D. Memory Overhead

The memory overhead of protection on the three networks
is depicted in Fig. 19. Memory overhead is calculated as
the percent of additional memory required for protection
compared to the model with no protection. The graph presents
the additional memory used as a raw number but also as a per-
centage. Ranger has the best performance from all cases. The
memory overhead for Aspis-100% is high as also discussed
in Section IV-A. In resource-limited environments, memory
overhead of more than 2GB is not acceptable. There are
significant memory utilization improvements shown in Aspis-
10% and Aspis-1%. This shows that Aspis leverages partial
protection effectively and takes advantage of the sparse tensor
format for efficient memory usage.

E. Comparison to Hardware-based Approaches

We perform comparisons in overhead to Structural Cod-
ing [25] which offers protection and correction of soft errors
using a syndrome-based error correction strategy. Structural
Coding outperforms existing state-of-the-art baselines, such as
RADAR [34], MILR [35], and Chipkill [36, 37]. Differently
from our method, Structural Coding offers protection of more
weights in the model through their use of checksums, leaving
out only a few corner cases which are not protected. Our
method, Aspis, offers protection of a smaller portion of
weights, except of course Aspis-100% that protects all weights
of the convolution layers.

The comparison is performed on the ResNet50 model with
the ImageNet data set as this is the overlapping set-up of
model and dataset that is also studied in [25]. We perform

our overhead evaluation per our experiment set-up in Sec. V-A.
Comparisons to Structural Coding are presented in Table V. As
also shown previously, Aspis-100% introduces a small runtime
overhead, however its memory overhead poses a challenge
since this 15.6% overhead is 2.5 GB in our experiments (see
also Fig. 19). Structural Coding offers minor improvements
over Aspis-100% in both runtime and memory, while also
offering broader protection since it includes all weights (not
just convolution layer weights). The memory overhead, while
an improvement over Aspis-100%, may still be a challenge in
systems that are resource-constrained. Aspis-10% and Aspis-
1% offer significant overhead improvements in both runtime
and memory compared to Structural Coding. Overall, Struc-
tural Coding offers excellent accuracy, but at higher overhead
cost. Aspis is an efficient alternative to these existing solutions
such as Structural Coding and Chipkill, specifically for reliable
operation in extreme resource-constrained environments such
as autonomous vehicles.

F. Case Study: Autonomous Driving

As a case study, we evaluate Aspis on an autonomous
driving agent, Learning By Cheating (LBC) [38] and simulate
the driving environment using an autonomous driving simu-
lator, CARLA [39]. The model used in LBC has a ResNet34
backbone to process input images from the camera sensor and
then separate convolution branches which correspond to high-
level control commands (i.e. turn right, turn left, go straight at
an intersection, or follow lane). The output of the model is a set
of five waypoints for the vehicle to follow. For the results that
we report here, we select a simple scenario: the vehicle drives
along a straight road until it reaches its destination. If the
vehicle crashes into an object, then the simulation terminates
and an accident is recorded. Faults are injected at the beginning
of the simulation. We profile important weights for LBC
using the modified Taylor criterion and the Comma2k19 data
set [40]. This data set contains video footage and other sensor
recordings from actual vehicles driving on the road. Table VI
shows the results of random faults and faults in critical weights
with no protection, and shows the results from protection with
Ranger and Aspis. Ranger can mitigate most faults in these
simulations, however, it is necessary not to have any crashes
in order for the vehicle to be safe. Aspis-1% instead offers
sufficient coverage.

Faults injected Vehicle Crash
Random Fault Injection 5.8%

Fault Injection on Important Weights 12%
Fault Injection on Important Weights + Ranger 0.4%

Fault Injection on Important Weights + Aspis-1% 0%

TABLE VI: Autonomous driving Agent LBC. The vehicle
needs to have 0 crashes to be safe.

VI. RELATED WORK

Importance scores. Importance scores rank components of
the neural network by some measure of importance that is
used to achieve goals such as model compression and model
pruning. Various approaches are used to determine component



criticality, such as NISP [12] which determines importance by
how values propagate through the neural network. Pruning
methods may use the norm of the filters to assess their
relative importance for the sake of model compression [13]
and may also incorporate other information, such as the
mean, standard deviation, activation function values [14], and
kernel patterns [30]. The Taylor expansion of a component’s
contribution to model accuracy, in particular, may be used for
assessing filter importance for neural network pruning [11].
The importance of neurons is studied through ablation in [41],
however this technique cannot be applied at weight-level
granularity due to the number of experiments needed (one per
weight). The importance of pixels to the output class is studied
in [42, 43, 44]. In particular, [43, 44] focus on determining test
data set adequacy. Differently from these works, we consider
importance scores at a weight-level for reliability instead of
model compression, pruning, and test data set adequacy.
Resilience estimation and protection in neural networks. Li
et al [31] use fault injection to study error propagation behav-
iors in DNNs and present insights for DNN design. Ibrahim
et al. [45] study the impact of soft errors on Deep Residual
Networks (ResNets) which are used for object recognition
and classification. DeepXplore [46] and DeepTest [47] focus
on the robustness and reliability testing of deep learning and
autonomous driving systems as well as finding corner cases
and vulnerable contexts, but not on protection solutions.

[48] performs analysis of CNNs under rowhammer attacks
causing single bit-flips. Fault injections are performed using
key heuristics that include sampling the validation set for faster
evaluation, flipping the exponent bit only for a big perturbation
impact, and sampling weights uniformly at random. Aspis
uses the importance score in order to ensure that all weights
are investigated for potential protection and to ensure that
no classification bias is introduced from sampling from the
validation set instead of using it in its entirety. Here, we
consider random flips at any bit position, to capture the effect
of bit flips that can happen in the wild. In summary, the
heuristics used in [48] are useful for evaluating rowhammer
attacks, but cannot be applied directly in our use case.

Protection efforts on NNs primarily focus on protecting
the neural network in a coarse-grained fashion, e.g., kernel-
level [49], layer-level [50], or feature-map-level protection
[16, 49, 51]. Structural coding [25] protects DNNs through a
syndrome-based error correction strategy utilizing checksums.
RADAR [34] also provides error correction using checksums.
MILR [35] corrects errors using the mathematical relation-
ship between inputs, outputs, and weights. Algorithm-based
fault tolerance (ABFT) can increase the reliability of object
detection [52]. Adam et al. use intensive fault injection exper-
iments to identify vulnerabilities in DenseNet201 and perform
selective protection [53]. FILR [51] combines feature map
duplication with full inference reruns on selected vulnerable
inferences to achieve high coverage without full duplication,
i.e., it estimates the vulnerability of feature maps and du-
plicates computation of selected feature maps by performing
selective protection. Our work differs from the above because:

1) rather than adding redundant computation to detect faults,
we apply selective data redundancy in candidate weights in
order to correct faults with low time- and space-wise overhead,
and 2) we focus on finer granularity before a feature map is
computed. Because of this finer granularity, we maintain low
overheads.

None of the existing work provides an automatic protec-
tion framework for low-overhead CNN protection for general
platforms. To our best knowledge, Aspis is the first end-to-
end automatic framework that enables software developers to
apply low-overhead protection on CNNs with minimal software
engineering efforts.

VII. CONCLUSIONS

We show that CNNs are vulnerable to faults and need to
be protected given their wide applicability in safety-critical
applications. Standard software protection mechanisms like
TMR either consume too much memory or increase CNN
runtime significantly. To address the above, we illustrated that
some weights are more important than others for reliability
and that protecting weights of higher importance can strike a
performance-reliability tradeoff. Pinpointing these most vul-
nerable weights, especially in complex software toolchains,
is not trivial. Aspis automates these procedures, and can
be used by practitioners to make their own NN software
resilient and efficient, striking a balance between reliability
and performance.
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