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ABSTRACT
Deep neural networks are known to be resilient to random bitwise
faults in their parameters. However, this resilience has primarily
been established through studies of classification models. The ex-
tent to which this claim holds for large-language models remains
under-explored. In this work, we conduct an extensive measure-
ment study on the impact of random bitwise faults in commercial-
scale language model inference. We first expose that these language
models are not truly resilient to random bit-flips. While aggregate
metrics such as accuracy may suggest resilience, an in-depth in-
spection of the generated outputs shows significant degradation
in text quality. Our analysis also shows that tasks requiring more
complex reasoning suffer more from performance and quality degra-
dation. Moreover, we extend our resilience analysis to models with
augmented reasoning capabilities, such as Chain-of-Thought or
Mixture of Experts architectures.
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1 INTRODUCTION
Soft errors are the manifestation of transient faults at the system
level, arising primarily due to radiation-induced bit flips or electro-
magnetic interference that alter the stored data or computational
states without causing permanent hardware damage [10, 23, 55, 56].
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With the increasing scale and complexity of high-performance com-
puting (HPC) systems, the frequency and impact of soft errors have
become more pronounced, posing critical challenges to system
reliability and correctness [57, 76, 92].

Traditional error detection and correction techniques, which
often rely on redundancy, checkpointing, or simple parity checks,
can introduce substantial overhead in performance and power con-
sumption, making them increasingly inefficient as systems scale
up [4, 46, 53, 70]. Therefore, there is a critical need to better de-
sign fault tolerance solutions for HPC applications against soft
errors, with application-specific error resilience characterization as
a critical step towards this goal. A profound understanding of the
application reaction to errors enables adaptive and cost-effective
fault tolerance solutions.

Among applications consuming the major computation cycles
of HPC systems, deep learning models, especially Large Language
Models (LLMs) [72, 79, 86], present an unprecedented scale of the
problem space. The error characteristics of such models depend on
various factors beyond the numerical computation accuracy [2, 41,
71].
1. The multitasking nature of LLMs. Unlike traditional HPC
workloads that focus strictly on numerical computations, LLM in-
ference is inherently multitasking, simultaneously serving diverse
applications such as natural language understanding, sentiment
analysis, code generation, translation, and interactive conversa-
tional tasks [9, 54]. This multitasking nature results in complex and
varied resilience, as each type of task may exhibit different sensi-
tivities and responses to soft errors. Consequently, comprehensive
resilience characterization must consider the varied operational
contexts of LLMs.
2. Dataset-driven model behaviors. The LLM performance and
resilience significantly depend on the datasets used for both pre-
training and fine-tuning [85, 91]. Differences in dataset characteris-
tics, such as complexity, semantic richness, and noise levels, lead to
substantial variations in the model robustness to soft errors. Fine-
tuning, which adapts pre-trained models to specific tasks, further
affects resilience by altering model sensitivity based on domain-
specific training data, adding complexity to error characterization.
3. Floating-point quantization. The extensive use of reduced-
precision arithmetic (such as FP16 and INT8) to improve computa-
tional efficiency and reduce memory footprints might inherently
alter the susceptibility of LLMs to soft errors. Lower-precision arith-
metic reduces the margin for tolerable errors, while the valid range
of floating-point values is also confined, making the effect on model
outputs and predictions unclear [30, 50].
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4. New features of LLMs. Advanced LLM features, including Mix-
ture of Experts (MoE) [20] and Chain-of-Thought (CoT) [82], dy-
namically adjust computational paths based on input data, context,
or intermediate computational outcomes. This adaptive behavior
increases the complexity of error resilience characterization be-
cause error propagation and the impact of the error become highly
dependent on runtime conditions and decisions. Predicting how
errors interact with such dynamically reconfigurations demands
intricate, context-sensitive analysis.

These unique factors underscore the need for specialized and
detailed error resilience characterization for LLMs, aiming to en-
able robust and effective fault tolerance solutions tailored specifi-
cally to their operational intricacies. To this end, we conduct sta-
tistical software-level fault injection to evaluate LLM reliability
during inference phase on different types of tasks across several
general-purpose models under both computational and memory
fault models. We also explore the reliability impact of datatype,
model quantization, and new features such as Mixture of Experts
(MoE) and Chain-of-Thought (CoT). Our results demystify the prior
studies and revisit the conclusion of “LLMs are quite resilient under
transient faults” made by [2], highlighting the importance to the
impact of soft errors. In short, we summarize our key observations:

• Memory faults are more problematic than computational faults.
The underlying reason is the fault origin and propagation de-
termined by unique computation pattern of LLMs.

• Generative tasks are more vulnerable than multiple-choice ones
due to the error propagation in sequential generated tokens,
especially for reasoning tasks.

• Fine-tuned LLMs for generative tasks are more reliable under
memory faults, possibly because the training process enhances
their ability to keep the sentence structure and fluency.

• MoEmodels aremore vulnerable than densemodels onmultiple-
choice tasks since the change of expert selection may leads to
extra accuracy degradation. However, they are more reliable
on generative tasks due to the lower possibility to use faulty
expert in the following generation iterations.

• Beam search is more reliable than greedy search for generative
tasks under computational faults because it can avoid corrupted
tokens by altering to another potential token sequence.

• Using Chain-of-Thought increases the reliability on reasoning
tasks because the model can recover from the corrupted tokens
in the reasoning process.

2 BACKGROUND
In this section, we briefly introduce some background knowledge.
We start with the general model architecture and then discuss sev-
eral unique optimization techniques, including model quantization,
Mixture of Experts, and Chain-of-Thought.

2.1 Architecture of Large Language Models
Large LanguageModels (LLMs) represent a significant breakthrough
in artificial intelligence, transforming the field of natural language
processing to many other domains. Most LLMs utilize transformer
architectures [78], including encoders and/or decoders that lever-
age self-attention mechanisms. Encoders process input features,

Figure 1: Llama3model architecture (one transformer block).

while decoders generate task-specific outputs based on these fea-
tures. General-purpose LLMs typically employ decoder-only de-
signs where causal masking restricts attention to preceding tokens,
enhancing generation capabilities. Common LLMs consist of se-
quential transformer blocks, each containing an attention block
and a Multi-Layer Perceptron (MLP). In the attention block, in-
puts are projected into Query (Q), Key (K), and Value (V) through
linear transformations. Attention weights computed from Q-K in-
teractions are applied to V, then processed through a final linear
projection layer, out_proj. The transformer block typically consists
of two-layer normalization operations positioned before and after
the attention block. The MLP follows the second normalization
layer and has three linear layers with an activation layer between
them. This architecture aims to enhance the model representation
capability after the attention mechanism. Figure 1 shows the archi-
tecture of LLama series models [77], which is widely used by most
open-source general-purpose LLMs.

As LLMs reach hundreds of billions of parameters, quantiza-
tion reduces memory and computational requirements by con-
verting high-precision weights (FP32) to lower bit-width formats
(FP16, INT8, and INT4). Traditional quantization techniques like
Post-Training Quantization (PTQ) [6, 47] and Quantization-Aware
Training (QAT) [37] have been widely used for neural networks.
Recent LLM-specific quantization methods include AWQ [43], Ze-
roQuant [89], and GPTQ [21]. These techniques enable significant
memory reduction while preserving the performance1.

2.2 Emerging LLM Optimizations
Mixture of Experts (MoE) is a powerful architecture introduced
to improve model scaling efficiency by activating only a subset of
parameters for each input [33]. It is applied to various domains
including speech recognition [80], multi-modal learning [68], and
machine translation [67]. In an MoE layer, inputs are first processed
by a “router” or “gating network” that dynamically directs each
token to a small set of specialized sub-networks called “experts”.
Each expert is a feed-forward network (i.e. MLP) specialized in
processing different types of inputs. This sparse activation pattern
allows MoE models to significantly increase parameter count with
relatively low computational cost increases during inference. Recent
LLM implementations have further refined MoE architectures, such
as Mixtral [34], Deepseek [45], Gemini [73], and Llama4 [69]. By
using only relevant parameters for each input, MoE models achieve
higher performance compared to dense models with equivalent
computational costs.

1In this paper we refer to performance as model performance, i.e., the ability of the
model to generate satisfying outputs, not runtime performance, unless specifically
mentioned.
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Chain-of-Thought (CoT) is a prompting technique that enhances
the reasoning capabilities of LLMs by encouraging them to generate
intermediate reasoning steps before producing a final answer [82].
In CoT prompting, models are instructed by specific prompts such
as “think step-by-step” or examples of detailed reasoning processes.
This technique has proven effective for complex tasks requiring
multi-step reasoning, such asmathematical problem-solving, logical
reasoning, and code generation.

3 EXPERIMENTAL METHODOLOGY
In this section, we describe our experimental methodology. We start
with the fault models and fault injection methods, then discuss the
selection of LLM workloads and the experimental platform.

3.1 Fault Models
Soft errors are the manifestation of hardware transient faults origi-
nating from sources like cosmic radiation [22], shrinking transistors,
and low voltage operations [10]. Here we consider both computa-
tional faults and memory faults. Computation-related faults affect
computational hardware components such as ALUs (Arithmetic
Logic Units), which aligns with the prior studies [5, 25, 40, 88]. We
consider two typical computational fault types: 1) 1bit-comp: single-
bit flip and 2) 2bits-comp: double-bit flip. As for memory faults, we
assume that register files, caches, and memory are protected by
Error Correction Code (ECC), which is the case in modern GPUs
used for LLM tasks [27]. Hence, we only consider 3) 2bits-mem:
double-bit flip, which ECC cannot correct.

3.2 Fault Injection Methodology
Fault injection (FI) experiments are used to understand how hard-
ware faults affect LLM inference. A fault injection experiment mim-
ics the behavior of faults occurring in memory or computation
paths, allowing us to observe the outcome of the fault [12, 39, 46].
Assumptions. We focus on the inference phase of LLMs since these
models are typically trained once and then used repeatedly by
different users [1, 11, 34, 72]. We assume there is only one error per
inference because the probability of multiple faults occurringwithin
the brief time frame of a single inference (which typically lasts
only milliseconds or seconds) is extremely low. Our assumption is
consistent with previous studies [2, 5, 19, 39, 40, 63, 66, 81].
Tool. Several fault injection frameworks for convolutional neu-
ral networks are publicly available, including TensorFI [13], Py-
TorchFI [51], and SNIFF [8]. For computational faults, our fault
injection method utilizes the hook mechanism in PyTorch, which is
similar to PyTorchFI. The hook function modifies the output tensor
and the modified version is used in the following data path. For
each fault injection trial, the location to inject a fault is identified
by block ID, layer ID, neuron ID, and bit locations. We randomly
choose a single token generation iteration for generative tasks.
When injecting a 2-bit memory fault, we locate a weight position
by the target block ID, layer ID, and weight ID, then randomly flip
two bits in this weight before each inference instance. After each
execution, we flip the same bits back to their fault-free values to
enable a fresh execution for the next fault injection run. In detail,
when deciding the target fault injection position, the block ID is
randomly selected among all decoder blocks, and the layer ID is the

type of the target linear layer. The weight/neuron ID is determined
by the row and column number in the selected tensor.
Outcome category. For direct-answer tasks, such as multiple-choice
and math, the outcome of a fault injection experiment can be cate-
gorized as 1)Masked, where the option or the final answer provided
by the model is as same as the reference (ground truth), and 2)
Silent Data Corruption (SDC), where the final answer provided by
the model is incorrect compared to the reference. For other tasks,
such as translation, summarization, and question answering, we
evaluate output quality with commonly used metrics [42, 58, 61].

One fault injection run reflects only the resilience of the spe-
cific injection location. Evaluating the resilience of the entire LLM
requires exhaustive fault injection experiments on every fault lo-
cation, which is infeasible given that the number of experiments
can reach billions or even trillions. Instead, we conduct statistical
fault injection, aligned with prior works [2, 87]. Each experiment
involves injecting a single fault at a random (i.e., uniformly dis-
tributed) location. We only consider linear layers in the transformer
blocks of the model, as they make up most of the computation (e.g.,
94% in Llama2-7B model with sequence length set to 1024) and are
therefore more likely to experience soft errors. We perform 1000
fault injection runs per input for multiple-choice and math tasks
and 500–3000 for other generative tasks, totaling over 13 million
fault injections for all evaluations, requiring approximately 4,800
GPU hours.

3.3 LLMWorkload Selection
Table 1 lists all the considered downstream tasks, datasets, and mod-
els. We also present the metrics of output correctness evaluation.

3.3.1 Models. We focus on two sets of models: 1) general-purpose
LLMs, which are well-suited for dealing with a wide range of tasks
and are commonly used as base models for fine-tuning; 2) task-
specific models, which are fine-tuned for better performance and
efficiency in specialized tasks.

We select three representative general-purpose LLMs for charac-
terization: 1) Llama3.1 [26] is Meta AI’s latest iteration of the
Llama architecture, known for its improved reasoning capabil-
ities and instruction-following. We use the 8B-Instruct version.
2) Qwen2.5 [86] is Alibaba’s advanced multilingual model with en-
hanced capabilities in non-English languages.We use the 1.5B/3B/7B-
Instruct versions. 3) Falcon3 [74] is Technology Innovation Insti-
tute’s model trained on a diverse, multilingual corpus with strong
performance on knowledge-intensive tasks. We employ the 7B-
Instruct version.

We incorporate two additionalgyk task-optimized models: 1)
ALMA [84] is specifically designed for multilingual translation
tasks, fine-tuned on Llama2-7Bmodel. 2)Llama3.1-Summarizer [52]
is a fine-tuned variant of Llama3.1-8B model specifically for ex-
tractive summarization tasks. Moreover, to evaluate the reliability
of MoE models, we employ Llama-3.2-8X3B-MOE-Instruct-18.4B
model [16] and compare it with the corresponding dense model
Llama-3.2-3B-Instruct.

3.3.2 Datasets. LLMs exhibit various capabilities including knowl-
edge retrieval, reasoning, and content generation. We consider two
sets of downstream tasks: 1) multiple-choice style tasks to test LLM
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Table 1: Selected LLM workloads and metrics.

Tasks Datasets Metrics Test models

General model
understanding
and reasoning

MMLU [29]

Accuracy

Llama3.1-8B [26]
Qwen2.5-7B [86]
Falcon3-7B [74]

AI2_ARC [14]
TruthfulQA [44]
WinoGrande [65]
HellaSwag [90]

Math GSM8k [15] Qwen2.5-7B
Falcon3-7B

Translation WMT16 [7] BLEU [58]
chrF++ [61]

Qwen2.5-7B
Llama2-7B [77]
ALMA-7B [84]

Summarization XLSum [28] Rouge-1
Rogue-L [42]

Llama3.1-8B
Qwen2.5-7B
Summarizer [52]

Question
Answering SQuAD v2 [62] Exact Match

F1 score

Llama3.1-8B
Qwen2.5-7B
Falcon3-7B

general reasoning and understanding and 2) generative tasks to
evaluate LLM generative and reasoning capabilities. Due to the
high computing resource consumption, we can only evaluate part
of each dataset. To effectively and fairly select the subsets, we em-
ploy tinyBenchmarks [60], which provides standardized subsets
(100 selected inputs) of these popular benchmarks.

Multiple-choice-style tasks and datasets are designed for evalu-
ating the reasoning and knowledge capabilities of LLMs. During
evaluation, the model scores each option and chooses the one with
the highest score instead of generating content.We utilize 5 datasets:
1) MMLU (Massive Multitask Language Understanding) [29] as-
sesses models across 57 subjects spanning mathematics, humani-
ties, sciences, and more. 2) ARC (AI2 Reasoning Challenge) [14]
evaluates grade-school level scientific reasoning abilities. 3) Truth-
fulQA [44] measures the model ability to avoid generating false
or misleading information. 4) WinoGrande [65] tests common-
sense reasoning through pronoun resolution challenges. 5) Hel-
laSwag [90] evaluates commonsense reasoning abilities by asking
models to choose the most plausible sentence completion.

In generative tasks, models are asked to produce content token
by token. Their generative and reasoning capabilities are evalu-
ated, including coherence, accuracy, and contextual appropriateness.
We employ four datasets: 1) GSM8k [15] contains grade school
math problems that test mathematical reasoning and step-by-step
problem-solving. 2)WMT16 [7] evaluates cross-lingual translation
capabilities across different language pairs. Specifically, we use the
de-en subset, which asks models to translate German to English.
This is a common language pair that is included in most translation
datasets. 3) XLSum [28] is a multilingual summarization dataset
that tests the model ability to extract and condense key information.
4) SQuAD v2 [62] is a question-answering dataset that evaluates
the ability to extract answers from context.

3.3.3 Metrics. We evaluate model performance across various
benchmarks using appropriate metrics.For multiple-choice tasks,
we report accuracy percentages. Accuracy is used to evaluate the
correctness of final answers for the math benchmark GSM8k. We

use ROUGE-1 and ROUGE-L [42] metrics to assess content over-
lap and longest common subsequence matching for the XLSum
summarization dataset. Machine translation quality on WMT16 is
measured using BLEU [58] and chrF++ [61] scores. For the SQuAD
v2 question-answering task, we report Exact Match and F1 Score
percentages. As the baseline performance of different settings varies,
we calculate normalized performance for each metric:

Normalized Performance =
𝑃fault_injected
𝑃fault_free

,

where 𝑃fault_injected is the metric value with fault injection and
𝑃fault_free is the baseline performance without fault injection. We
apply the Log-transformation method [35, 36] to obtain the error
margins of normalized performance at 95% confidence level.

3.3.4 Generation Settings. For all experiments in evaluation sec-
tion, we use the generate() function from huggingface [83] to per-
form inference. We disable sampling with a fixed random seed to
ensure the same set of fault injection positions. We use greedy
search by setting num_beam=1.

3.4 Experiment Platform
Due to limited computational resources, all experiments are con-
ducted across two hardware configurations: an AMD EPYC 7742
64-Core CPU paired with an NVIDIA A100 GPU (Ampere archi-
tecture) running Rocky Linux 8.10, and an NVIDIA GH200 Grace
Hopper Superchip that combines a NVIDIA Grace CPU with 72
Arm Neoverse V2 cores and an NVIDIA H100 GPU (Hopper archi-
tecture) running Rocky Linux 9.3. There are negligible differences
(< 0.03% for raw model performance across these two hardware
configurations).

4 CHARACTERIZATION RESULTS
We present an end-to-end characterization of LLM resilience, ex-
amining several key aspects across the entire workflow of LLM
inference, as illustrated in Figure 2. We begin by analyzing the gen-
eral resilience of LLMs under different fault models and inference
tasks (subsection 4.1). Next, we explore how various model archi-
tectures and configurations influence resilience (subsection 4.2).
Finally, we investigate the resilience implications of different oper-
ational settings during inference (subsection 4.3).

4.1 Overall Resilience Characteristics
Figure 3 presents the fault injection results for all tasks, datasets,
and fault models considered in this study. The average model per-
formance degradation is 2.28%, with the maximum observed degra-
dation reaching 13.09%. Considerable performance improvement
on the TruthfulQA dataset under computational faults is observed.
This is different from the conventional neural networks where
performance decreases under faults [12, 13, 48].

We observe up to 13.09% performance degradation for memory
faults. As model sizes continue to grow, these larger architectures
become increasingly vulnerable to memory faults during inference.
The degree of resilience varies noticeably across different tasks,
LLM architectures, and fault models. In the following sections,
we delve deeper into these aspects, exploring and explaining the
underlying reasons behind these resilience characteristics.
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Figure 2: Workflow of LLM resilience assessment.
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Figure 3: LLM performance change after fault injection. The numbers are normalized by the performance of the models under
fault-free execution.

4.1.1 Resilience under Various Fault Models. The average perfor-
mance under the considered fault models across all models and
datasets is presented in Figure 4. Among these fault models, LLMs
consistently demonstrate greater resilience to computational faults
than to memory faults.

The observed resilience gap between these two fault types arises
primarily due to differences in error origin and propagation be-
havior during computation. Examples of error propagation for a
memory fault and a computational fault are illustrated in Figure 5
and Figure 6, respectively. Here, we inject a fault in the up_proj
layer in Block10, flipping the most significant bit (MSB) at position
(20, 20) of the weight/output tensor. We only show the first 50 × 50
elements in a tensor due to space constraints.

As shown in Figure 5, when a bit-flip occurs in memory, it cor-
rupts a specificweight value utilized during GEMM (GeneralMatrix-
Matrix Multiplication) computations. This corrupted weight propa-
gates errors across an entire column of the resulting output tensor.

1bit-comp 2bits-comp 2bits-mem
Fault Models

0.8

0.9

1.0

No
rm

.
Pe

rfo
rm

an
ce

Figure 4: Average performance change of LLM workloads
under different fault models. Memory faults cause higher
performance degradation, thus, are more critical.

Since the output tensor becomes the input to subsequent layers, the
corrupted column values further propagate, ultimately affecting
the entire output tensor of the next layer.

Conversely, computational faults, modeled as bit-flip(s) occurring
within neurons, exhibit a distinct propagation pattern. As illustrated
in Figure 6, a computational fault initially propagates across a single
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Figure 5: An example of the propagation trace of a memory
fault. The fault propagates to the entire column of the output
tensor of the fault-injected layer and then further propagates
to the whole output tensor of the succeeding layer. Green
tensors are fault-free ones; the heatmap shows the value
distributionwithin a tensor (in log-scale), inwhich the yellow
color indicates extremely large values caused by the fault.

Figure 6: An example of a computational fault where it first
propagates to the entire row of output tensor of the next
layer, then is masked by the following normalization layer.

row of the output from the following layer and remains localized,
unable to influence other rows until subsequent computations in the
next transformer block. According to the transformer architecture
(Figure 1), normalization layers typically precede each attention
and MLP block, which can significantly mitigate and contain errors
before they propagate widely. Due to the more localized and con-
strained propagation of computational faults compared to memory
faults, the significant difference in resilience between these two
fault types is well justified.

Analyzing the detailed outputs of fault injection experiments,
the SDCs can be categorized into two types: 1) distorted outputs
such as repeated or meaningless tokens and 2) subtly wrong outputs
where the answer has incorrect information. Figure 7 shows some
examples. The detailed breakdown of subtly wrong and distorted
outputs is shown in Figure 8. Here we evaluate Qwen2.5-7B and
Falcon3-7B models with GSM8k dataset. In most of the cases, the
majority of SDCs are subtly wrong outputs, except Qwen2.5-7B
under memory faults. Compared to computational faults, the occur-
rence of distorted outputs is more frequent under memory faults.
This difference arises from the nature of error origin and propaga-
tion. For memory faults, 13.28% of outputs contain such distortions,
while computational faults yield only 0.89–1.21% distorted outputs.

Furthermore, we dive into the understanding of the impact of
faults affecting different bit positions. We group the experiments

Figure 7: Examples of distorted and subtly wrong outputs.
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pu
t (

%
)

1bit-comp 2bits-comp 2bits-mem

Subtly Distorted

Figure 8: SDC breakdown of distorted and subtly wrong out-
puts with GSM8k dataset after fault injection. Subtly wrong
outputs take the majority of the SDCs.

based on the position of the highest flipped bit, and then calculate
the proportion of outputs contributed by each group. Figure 9 shows
the distribution for subtly wrong outputs and Figure 10 shows the
distribution for distorted outputs. In all cases, bit position 14 is
the most vulnerable with the highest proportion, since it is the
Most Significant Bit (MSB). Additionally, for distorted outputs, the
highest two bits cause most of the distorted outputs, while the
proportion is 0 for the mantissa bits.

Observation #1:Memory faults are more problematic than
computational faults. The underlying reason is the fault ori-
gin and propagation determined by the unique computation
pattern of LLMs.

4.1.2 Resilience of Downstream Tasks. The average performance
degradation after fault injection across various downstream tasks
and datasets is presented in Figure 11. Among all evaluated tasks,
TruthfulQA demonstrates the highest resilience, showing negligible
performance degradation (with an average performance change of
0.04%). GSM8k, however, is the most vulnerable task, experiencing
an average performance drop of approximately 3.85%.

A deeper examination of the results reveals that the observed
differences in resilience are correlated with the nature of task types:
multiple-choice versus generative tasks. Specifically, multiple-choice
tasks exhibit an average accuracy drop of 1.65%, whereas generative
tasks show a larger average decrease of 3.2%.

This gap is primarily due to the differences inherent in task
evaluation methods. For multiple-choice tasks, faults may alter the
confidence scores assigned to answer options, but such minor shifts
can often be masked, allowing the correct option to remain selected.
Generative tasks, in contrast, involve sequential token generation,
causing faults to propagate through the output sequence, increasing
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(a) Qwen2.5-7B
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(b) Falcon3-7B
Figure 9: Proportion of subtly wrong outputs grouped by the
position of the highest flipped bit. A wider range indicates
that the corresponding bit position is more vulnerable. Bit
position 14 is the most vulnerable bit.
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(b) Falcon3-7B
Figure 10: Proportion of distorted outputs grouped by the
position of the highest flipped bit. Bit position 14 is the most
vulnerable one. Lower bits cannot cause distorted outputs.
Note that here we do not show the corresponding results
of computational faults for Falcon3-7B model, because the
distorted outputs are very rare (< 0.1%).

the likelihood of generating incorrect tokens and ultimately causing
Silent Data Corruptions (SDCs). Moreover, the impact of corrupted
tokens varies across different generative tasks. For translation, sum-
marization, and question-answering tasks, faults might reduce the
output quality without completely corrupting it. Conversely, faults
that occur in intermediate reasoning steps significantly increase
the risk of generating incorrect final results for math-solving tasks,
substantially degrading accuracy. An example illustrating how an
intermediate calculation error caused by faults in the reasoning
step propagates to the final output and leads to an SDC is shown in
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Figure 11: Performance change after fault injection, consid-
ering various downstream tasks with different datasets.

Figure 12: An example of SDCs: A fault propagates and causes
the LLM to generate different tokens in the reasoning process,
leading to the wrong final answer. Critical tokens contribut-
ing to answer correctness are highlighted in red.

Figure 12. The “+” in step two changes to “-”, propagating to the
last reasoning step, and finally leads to an incorrect final answer.

Observation #2: Generative tasks are more vulnerable than
multiple-choice ones due to the error propagation in sequen-
tial generated tokens, especially for reasoning tasks.

4.2 Model-Specific Resilience Study
We analyze the resilience characteristics across various model ar-
chitectures and configurations. We cover general-purpose LLMs,
fine-tuned models, Mixture-of-Experts, scale, and quantization.

4.2.1 Resilience Comparison of General-Purpose LLMs. Although
the three general-purpose LLMs have similar architectures, their re-
liability is different and depends on certain experimental conditions.
For example, Falcon3-7B experiences a 9.36% performance degra-
dation on the GSM8k dataset under memory faults, compared to a
larger degradation of 13.09% for Qwen2.5-7B. Conversely, Falcon3-
7B exhibits a slightly higher degradation when subjected to compu-
tational faults. This indicates that the resilience of these foundation
models varies according to the fault model. This observation is
related to the percentage of distorted outputs: as shown in Figure 8,
Falcon3-7B generates fewer distorted tokens compared to Qwen2.5-
7B. Given that memory faults primarily drive the production of
these distorted outputs, this difference helps explain the resilience
gap between these two models.

For many tasks such as WinoGrande, TruthfulQA, and SQuAD
v2, Falcon3-7B is more reliable than the others, as shown in Figure 3.
The average performance degradations across all tasks and fault
models are 2.08%, 1.92%, and 1% for Qwen2.5-7B, Llama3.1-8B, and
Falcon3-7B, respectively. Although the general-purpose LLMs we
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(a) Weights (b) Neurons
Figure 13: The value distributions of weights and neurons
in the three studied general-purpose models. The varying
distributions lead to the unique resilience behaviors.
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Figure 14: Performance degradation after fault injection com-
paring MoE models and normal models. MoE models are
slightly more vulnerable than normal models on multiple-
choice tasks, but more reliable on generative tasks.
evaluate share similar architectures, they are trained by different
organizations using diverse datasets and proprietary techniques,
making them distinct models. Precisely identifying the root causes
of resilience differences remains challenging. However, the vari-
ations in their distributions of weights and neurons may provide
insights. We illustrate these differences by examining the last linear
layer (down_proj) of the last (28th) transformer block (Figure 13).
The distribution for the three models is very different, which may
lead to various distributions of values after bit flips. As Falcon3-7B
has the widest distribution, the deviation after bit-flips could be
smaller, leading to the high stability of the model.

Observation #3: General-purpose LLMs exhibit different
resilience to memory faults due to their varying distributions
of neurons and weights.

4.2.2 Resilience Comparison of General-Purpose Models and Fine-
Tuned Models. The right bars in Figure 3 (d) show the reliability
of general-purpose models and fine-tuned models under memory
faults. The fine-tuned Llama3.1-Summarizer exhibits greater re-
silience under memory faults compared with Llama3.1-8B. It is
possible that fine-tuned generative LLMs are trained specially to
maintain the structure and fluency of their outputs, which increases
resilience to severe (memory) faults.

Observation #4: Fine-tuned LLMs for generative tasks are
more reliable under memory faults, possibly because the train-
ing process enhances their ability to maintain sentence struc-
ture and fluency.

4.2.3 Impact of Mixture-of-Experts. We evaluate LLama3.2-MoE
model on MMLU, AI2_ARC, WMT16, and SQuAD v2 datasets since
they include diverse content. The resilience impact of Mixture-
of-Experts (MoE) architectures depends significantly on the type
of task (Figure 14). For multiple-choice tasks (MMLU and ARC
datasets), MoE models are slightly less resilient compared to dense
models. However, for generative tasks like WMT16 and SQuAD v2,
MoE models exhibit higher resilience.

Intuitively, given that only a subset of tokens are affected by
a faulty expert, one might expect MoE models to be inherently
more resilient. However, we observed scenarios where MoE models
are more vulnerable. To understand these results, we analyze the
underlying mechanism of expert selection. MoE models use router
layers to dynamically assign experts (two out of eight experts in
our experimental setup) to each token for each generation iteration.
During the first iteration, approximately 25% of tokens might be
directly affected by a memory fault. Due to error propagation across
the entire column of the output tensor (as illustrated in Figure 5),
faults affect all tokens (each row of the tensor). The faults further
propagate to subsequent router layers, indirectly altering expert se-
lections in later blocks. Since multiple-choice tasks typically involve
only a single generation iteration, this initial widespread impact
leads to slightly higher performance degradation in MoE models.

In contrast, generative tasks typically span multiple generation
iterations. After the initial iteration, subsequent iterations usually
rely on outputs from previous steps and cached key-value pairs,
limiting the proportion of tokens directly influenced by a faulty
expert. Thus, for generative tasks, the influence of faults diminishes
significantly in subsequent iterations, resulting in overall higher
resilience in MoE models compared to dense models.

Observation #5:MoEmodels are more vulnerable than dense
models on multiple-choice tasks since the change of expert
selection may lead to extra accuracy degradation. However,
they are more reliable on generative tasks due to the lower
possibility of using faulty experts in the following generation
iterations after the fault-injected layer.
MoE models introduce a specialized component, the gate layer

(router), responsible for expert selection. Faults in gate layers af-
fect the choice of experts, indirectly causing incorrect outputs. We
use model.children() to locate the gate layer in each decoder block,
which are between the attention blocks and experts. An example
is shown in Figure 15, where we test the reliability of the MoE
model on the translation task, with 2bits-mem faults injected in
gate layers only. In 78.6% of the experiments, the expert’s selections
are changed, while 47.4% of those have an output with at least one
changed token. The overall degradation of BLEU and chrF++ are
2.1% and 1.8%. Thus, gate layers present unique resilience consid-
erations and must be explicitly protected. An attacker targeting
gate layers could induce incorrect outputs without modifying the
weights directly, highlighting its criticality from both reliability and
security perspectives.

Observation #6:Memory faults in gate layers can change the
expert selections, leading to accuracy degradation without
modifying the experts themselves.

4.2.4 The Impact of Model Scale. We evaluate the resilience of
Qwen2.5 model with various sizes (1.5B, 3B, 7B, 14B, and 32B)
on multiple datasets, see Figure 16. The evaluated models exhibit
similar levels of reliability, and no clear relationship between model
size and resilience emerges. Two factors potentially explain this
observation. First, models within the same family share a common
architectural foundation, resulting in similar error propagation
patterns. Second, since these models originate from the same series,
they likely employ similar training datasets and strategies. Thus,
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Figure 15: An example of computation faults leading to per-
formance degradation when applying MoE, with Llama3.2-
MoE model and WMT16 dataset. Faults in the gate layer may
alter expert selection, leading to changes in generated tokens.
This can cause SDCs and performance degradation.
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Figure 16: Performance change after fault injection in
Qwen2.5 models with different model sizes. Model scale does
not have a significant impact on LLM resilience.

differences in resilience among models of varying sizes within a
single series are inherently limited. We conclude that model size
alone is not a major factor influencing resilience for models within
the same architecture family.

Observation #7: LLM scale does not affect model resilience.

4.2.5 Quantized. We evaluate two GPTQ [21] quantized variants
(4-bit and 8-bit) of the Qwen2.5-7B model, comparing their re-
silience with the original BF16 version. For fault-free execution,
model accuracy slightly decreases after quantization. Here we only
evaluate the 2-bit memory fault model since the value and storage
of quantized weights are the main differences compared with non-
quantized models. The resilience results are shown in Figure 17.
Model resilience increases after quantization. Both the 4-bit and
8-bit quantized models exhibit substantially greater resilience than
the BF16 model, maintaining nearly 100% performance. This im-
provement is attributed to differences in numerical representation:
for example, flipping the most significant exponent bit of a BF16
weight could drastically alter its magnitude (e.g., from 0.5 to approx-
imately 1.7× 1038). In contrast, an equivalent bit-flip in a quantized
4-bit or 8-bit representation causes only a modest change in value,
significantly reducing the likelihood of triggering an SDC.

Observation #8: Quantized models are more reliable, which
is the opposite of intuition. Bit-flips within quantized weights
cannot cause extreme deviation, lowering the chance of de-
creasing model performance.

4.3 Resilience Investigation of LLM Settings
4.3.1 Beam Search vs Greedy Search. We investigate the impact of
different generation strategies (beam search versus greedy search)
on model resilience using translation and summarization tasks,
as shown in Figure 18. Since memory faults influence all token
generation iterations and would dominate the resilience results, we
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Figure 17: Resilience comparison of quantized models and
non-quantized models in terms of performance change after
fault injection. GPTQ-4bit and GPTQ-8bit are the two quan-
tized versions of Qwen2.5-7B, compared to the non-quantized
BF16 version. The quantized models are more reliable.
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Figure 18: Performance change after 2-bit computational
fault injection, comparing the beam search and greedy search.
Beam search is more resilient.

focus exclusively on the 2-bit computational fault model for this
analysis. We set the beam size to 6, a commonly recommended value
in prior work [24, 31]. Results indicate that beam search consistently
demonstrates greater resilience than greedy search for fine-tuned
models (ALMA-7B and Summarizer) on both tested datasets. Beam
search can also increase the reliability of other models although the
differences are not statistically significant. The real error margins
for the employed metrics are narrower than those in Figure 18 since
the value ranges are also narrower than the binomial distribution.

This resilience gap arises from fundamental differences between
the two token selection algorithms. Greedy search selects the token
with the highest confidence at each generation iteration, increas-
ing vulnerability to errors; a single erroneous token selection can
cascade, adversely affecting all subsequent token selections. Con-
versely, beam search explores multiple candidate sequences simul-
taneously, maintaining several potential generation paths based
on cumulative probabilities. This approach provides robustness
against isolated errors, as an erroneous token significantly lowers
the cumulative probability of the affected path. Beam search can
thus ultimately choose alternative paths unaffected by the faulty
token, effectively mitigating computational faults.

Considering the trade-off between resilience and runtime over-
head, wemeasure the resilience and runtime with different numbers
of beams as shown in Figure 19. The setting with one beam refers
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Figure 19: The trade-off between resilience and runtime cost
with different number of beams. Switching from greedy
search (num_beam=1) to beam search, we notice an increase
in normalized performance. When increasing the number
of beams, the normalized performance shows no significant
growth while the runtime cost continues to increase.
to the greedy search. When switching to beam search, the nor-
malized performance increases, i.e., beam search is more reliable,
with higher overhead. When the number of beams increases, the
resilience remains stable, while the runtime continues to increase.
Thus, the optimal trade-off point is setting the num_beam to 2.

In short, beam search is preferred for generative tasks to en-
hance resilience, especially when its adoption does not compromise
generation accuracy or quality. When runtime overhead has to be
minimized, greedy search should be used.

Observation #9: Beam search is more reliable than greedy
search for generative tasks with fine-tuned models under
computational faults because it can avoid corrupted tokens
by choosing another potential token sequence.

4.3.2 Reasoning: Chain-of-Thought (CoT). We assess the resilience
of reasoning by evaluating the Qwen2.5-7B and Falcon3-7B models
on GSM8k dataset with and without the reasoning process, i.e.,
generating the reasons.When evaluating the resilience of reasoning,
the computational faults are only injectedwithin the computation of
generating reasoning tokens. For the injected memory faults, their
impact lasts for the whole inference execution, including reasoning
and the final answer generation. Both LLMs perform reasoning by
default for math tasks. To disable reasoning, we add an instruction
in the prompt to force the models to directly generate the final
answer: “Solve the following math problem, but output only the
final numerical answer”.

Figure 20 shows the resilience evaluation results: using CoT is
more reliable. Specifically, considering the computational faults, the
normalized performance numbers are around 1.0 for both LLMs (the
first two bars in each experiment set), indicating that computational
faults in the reasoning part barely change the final answer. As for
memory faults, although the normalized performance is around
0.9, using CoT still exhibits higher performance. This is because
the model sometimes can recover from the wrong tokens during
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Figure 20: Performance change of Chain-of-Thought with
fault injection. Applying CoT increases resilience.

the reasoning process, and still give out the correct final answer.
In contrast, faults in the final answer generation have no further
chance of being masked, thus are more likely to cause SDCs.

Observation #10: Using CoT increases the reliability on rea-
soning tasks because the model can recover from the cor-
rupted tokens in the reasoning process.

4.3.3 Data Type. We evaluate the impact of datatype on resilience
for the Qwen2.5-7B model across several datasets (Figure 21). Our
analysis indicates that FP16 datatype offers the highest resilience,
while BF16 exhibits the greatest vulnerability.

Table 2: Format of floating-point data types.

Format Total Bits Exp Bits Approximate Range

FP16 16 5 6 × 10−5 to 65504
FP32 32 8 10−38 to 3 × 1038

BF16 16 8 10−38 to 3 × 1038
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Figure 21: Performance degradation of Qwen2.5-7B after
fault injection, considering various data types. FP16 is the
most resilient datatype, while BF16 is the most vulnerable.

The observed vulnerability patterns across datatypes can be
attributed to their respective bit allocations and representable nu-
meric ranges, see Table 2. FP16 allocates 5 bits to the exponent,
while BF16 allocates 8 exponent bits. Consequently, BF16 has a
significantly larger representable numeric range compared to FP16,
making bit-flips in its higher-order exponent bits more likely to re-
sult in extreme values and subsequent SDCs. When comparing FP32
and FP16, the representable range appears dominant in determining
resilience: although FP16 has fewer bits and a higher probability
that a random fault will affect exponent bits, the smaller exponent
bit-width significantly limits the potential numeric impact of such
faults, resulting in fewer extreme values and fewer SDCs.

Observation #11: The datatype with a larger representable
range and proportion of exponent bits is more unreliable.

5 RELATEDWORK
Most existing studies focus on measuring reliability of neural net-
works [2, 17, 18, 32, 38, 39, 49, 59, 64, 75]. Li et al [39] conduct fault
injection campaigns to analyze error propagation in DNNs, focusing
on the input and outputs of GPU kernels. Ibrahim et al. [32] analyze
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the resilience of Deep Residual Networks (ResNets) considering
tasks such as object recognition and classification. DeepXplore [59]
and DeepTest [75] evaluate the robustness of deep learning and au-
tonomous driving systems, emphasizing the goal of finding corner
cases and vulnerable contexts. Observations from DNNs cannot be
directly applied to transformer-based LLMs due to architectural
differences, such as the use of MoE and CoT in recent LLMs. Also,
transformers rely on MLP (multi-layer perceptron), while CNNs
and conventional DNNs incorporate convolution layers. It is es-
sential to re-visit the resilience of LLMs. For transformers, Ma et
al. combine fault injection and algorithmic checksum to assess the
reliability of each component in transformer-based models [49].
Roquet et al. perform a beam test to measure fault effects on vision
transformers [64]. The closest related work is by Agarwal et al. [2],
who perform software-level fault injection to evaluate the reliability
of LLMs across multiple tasks. Their study focuses on small-scale
models with basic LLM architectures ranging from 38.9M to 222.9M
parameters, using 10 inputs per dataset. To detect SDCs, they rely
on strict word-to-word matching and cosine similarity, which may
not fully capture the semantic correctness inherent to LLM tasks.

Different from all the above work, we perform an end-to-end
complete study on LLM inference resilience, including various
downstream tasks, model architectures, and settings, as well as
different fault models. We consider emerging LLM performance
optimization techniques such as MoE and CoT. Our characteriza-
tion study reveals new insights that can guide the future design
of AI-accelerators and LLMs. To our best knowledge, this is the first
end-to-end resilience study of LLM inference.

6 LIMITATION
In this section, we discuss the limitations of our study. Firstly, the
observations and conclusions in this paper may be restricted by
the models we selected for evaluation. We focus on three popular
open-source model architecture: llama, Qwen, and Falcon. We do
not have access to closed-source models such as GPT4 [1], Gem-
ini [73], and Claude [3]. We carefully select general-purpose and
fine-tuned LLMs across multiple model families to maximize the
generalizability of our findings. Additionally, due to limited compu-
tational resources, the experiments are performed on two hardware
platforms equipped with NVIDIA GPUs. For the overlapping exper-
iments we test on both platforms, there are negligible differences
(less than 0.03% for raw model performance), indicating that our ob-
servations are not significantly affected by the hardware variation.
Given that the fault injection study is performed at the software
level without depending on the underlying architectural features,
we expect similar observations on other accelerators such as AMD
GPUs and AI ASICs. However, we cannot confirm our observations
on those platforms due to lack of accesses. We believe our study
provides valuable insights into LLM resilience to soft errors and
establishes a solid foundation for future research in this critical
area.

7 CONCLUSION
Modern HPC systems support exascale computations, enabling
computationally demanding workloads like Large Language Model
(LLM) inference. Yet, as scale increases, random bitwise faults oc-
cur in computing infrastructures. A common practice in handling

these random faults is to pass over them, as studies have shown
that neural networks are resilient to random bitwise corruptions.
This work revisits this hypothesis and validates it through an exten-
sive measurement study on the impact of random bitwise faults in
LLMs. We examine three models trained on nine different datasets
across five tasks and measure the impact using six metrics, each
corresponding to a specific task. We also perform a manual analy-
sis of the model generations. Moreover, we analyze the impact on
models using techniques employed in typical deployment scenarios,
e.g., quantization, Mixture of Experts, and Chain-of-Thought. Our
results offer valuable insights for future research:
HPC system designers. We show that memory faults are more
problematic than computational faults on LLMs. HPC system de-
signers could therefore achieve greater resilience when running
LLMs by protecting memory subsystems from random bitwise
faults, rather than focusing more on reducing computational errors,
such as silent data corruptions [57, 76].
LLMproviders and algorithmdevelopers.Our analysis suggests
that the underlying cause of LLM susceptibility to random memory
faults is the fault origin and propagation, which are determined by
the unique computation patterns of LLMs. Hence, future work could
focus on developing inference algorithms for LLMs that reduce fault
propagation (i.e., fault isolation) and enhance model resilience. Gen-
erative tasks are more vulnerable than multiple-choice tasks due
to error propagation in sequentially generated tokens, especially
for reasoning tasks. We thus encourage future work on designing
performance metrics that characterize the quality degradation of
generated outputs across various aspects.
Practitioners. Our study finds that specialized LLMs, through
fine-tuning, are more reliable under memory faults compared to
general-purpose LLMs. Therefore, when employing LLMs for spe-
cific tasks in application development, it would be desirable to
fine-tune general-purpose LLMs and enhance their resilience under
random bitwise faults. Generally, MoE and CoT models are more
reliable on generative and reasoning tasks. But when using MoE
for multiple-choice tasks, extra care must be taken, as it makes the
LLMs more vulnerable than their standalone counterparts.
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