### SUGAR: <u>Speeding Up G</u>PGPU <u>Application Resilience</u> Estimation with Input Sizing

Lishan Yang, Bin Nie, Adwait Jog, and Evgenia Smirni William & Mary



### **GPUs & Soft Errors**

Supercomputing









#### Self-driving cars





http://global.atpinc.com/Memory-insider/what-is-soft-errordetection-sram-emmc

- GPUs are commonly deployed
- GPUs are prone to <u>soft errors</u>
  - High-energy radioactive particles (i.e., cosmic rays) cause bit flips
  - Commonly observed

SDC

- Impact on long-running applications can be tremendous
  - Masked output: Correct
  - Other outputs: Crash, hang, ... •
  - Silent Data Corruption (SDC) output: Incorrect
- SDCs in critical applications can be dangerous





\*Li, Guanpeng, et al. "Understanding error propagation in deep learning neural network (DNN) accelerators and applications." SC 2017. 2

## Reliability Research: Fault Injection

• Inject single-bit errors into different locations (fault sites) in applications

kernel\_id, thread\_id, instruction\_id, bit\_position>

7.3 min  $\times \infty$  inputs = 7.3 min

Ground truth: huge unreachable exhaustive fault sites!

| 2DCONV                      |                      |                      | _ Fault site pruning                                            |
|-----------------------------|----------------------|----------------------|-----------------------------------------------------------------|
| Input size                  | Small                | Large                | $10 \text{ min} \times 440 - 12 \text{ h}$                      |
| Num. of Elements            | 32 × 32              | $2048 \times 2048$   | $-10 \text{ mm} \times 440 - 1.2 \text{ m}$                     |
| Num. of Threads             | 1024                 | $4.19 \times 10^{6}$ | $1.2 \text{ h} \times \infty \text{ inputs} = \infty \text{ h}$ |
| Num. of Fault Sites         | $1.90 \times 10^{6}$ | $8.71 \times 10^{9}$ |                                                                 |
| Execution Time (Simulation) | 1 sec                | 10 min               | Migic?                                                          |
|                             |                      |                      | $1 \sec \times 440 = 7.3 \min$                                  |

- Fault site selection:
  - **Random sampling** based on statistics: 1K runs,  $\pm 3\%$  error
  - (state-of-the-art) Fault site pruning\*: 300~2K runs, ~1% error
    - Resilience proxy: Dynamic Instruction (DI) count

## **GPGPU** Application Parallelization



### SUGAR Idea (Example: PathFinder)



## Why?



# What if input changes branch divergence? 🤪

• Code snippet of BFS K8

1. int.tid = blockIdx.x\*MAX\_THREADS\_PER\_BLOCK + threadIdx.x;... Check Validation
2 if( tid<no\_of\_nodes && g\_updating\_graph\_mask[tid])
3 // g\_updating\_graph\_mask is calculated by the previous kernel based on the input.
5 g\_graph\_mask[tid]=true;
6 g\_graph\_visited[tid]=true;
7 \*g\_over=true;
8 g\_updating\_graph\_mask[tid]=false;
9 }
</pre>

### DI-sensitive Patterns (Example: BFS)

















## **Evaluation: Accuracy**



## **Evaluation: Accuracy**



# **Evaluation: Speedup**

- Average speedup:
  - Medium: 7.3x
  - Large: 186.6x





## **SUGAR Summary**



#### SUGAR Workflow



#### **Evaluation:** Accuracy Average Difference/Error Baseline: Fault Site Pruning (state-of-the-art) Masked SDC Other masker 0.25% Medium 0.68% 0.64% other Asymptote resilience estimation (ZZZ) Experiment Large 1.14% 1.07% 0.31% Estimation Resilience trend: down/up/flat 0.28% All 0.89% 0.83% 5555 Asymptote

#### **Evaluation:** Speedup

#### Average speedup: Medium: 7.3x



 $\checkmark$  DI Patterns  $\rightarrow$  Resilience Patterns

+DI Profiling

459500 492000 462500 463900 463500

Tesicce Nosisas reelass Tesisce Nasice

Medium

 $\checkmark$  Small  $\rightarrow$  Large

**DI-sensitive Patterns** 

+DI Profiling

DI patterns

Resilience patterns:

20 G2



#### Thank you :)

#### SUGAR: Speeding Up GPGPU Application Resilience Estimation with Input Sizing

Lishan Yang, Bin Nie, Adwait Jog, and Evgenia Smirni William & Mary

This work is supported by NSF grant CCF-1717532