
Probing Weaknesses in GPU Reliability
Assessment: A Cross-Layer Approach

Lishan Yang
George Mason University, USA

lyang28@gmu.edu

George Papadimitriou
University of Athens, Greece

georgepap@di.uoa.gr

Dimitrios Sartzetakis
University of Athens, Greece

sartzet@di.uoa.gr

Adwait Jog
University of Virginia, USA

ajog@virginia.edu

Evgenia Smirni
William & Mary, USA
esmirni@cs.wm.edu

Dimitris Gizopoulos
University of Athens, Greece

dgizop@di.uoa.gr

Abstract—Due to extensive deployment and heavy usage of
GPUs, ensuring the reliability of such devices is crucial. Current
software-based reliability evaluation methodologies, albeit fast,
often neglect the intricate hardware complexities of modern GPU
designs. This oversight could result in misleading measurements
and misguided decisions regarding protection strategies. This
work breaks new ground by examining well-established vul-
nerability assessment methods for modern GPU architectures,
from the microarchitecture all the way to the software lay-
ers. It highlights divergences between popular software-based
vulnerability evaluation methods and the ground truth cross-
layer evaluation (which, as we show, holds even when strong
protection like triple modular redundancy is employed); accurate
evaluation requires considering fault distribution from hardware
to software. Our comprehensive measurements offer valuable
insights into accurately assessing GPU reliability.

Index Terms—reliability assessment, GPUs, cross-layer

I. INTRODUCTION

Rapid developments in silicon manufacturing have enabled
increased performance and improved energy efficiency of
current graphics processing units (GPUs) [1]. Beyond per-
formance, reliability assessment is a critical aspect of chip
design [2]–[6]. Inaccurate reliability assessments can lead to
pitfalls and wrong design decisions, finally resulting in more
vulnerabilities [7]. Numerous general purpose GPU (GPGPU)
applications have strict reliability requirements [8]–[10]. In
the automotive domain where GPUs are also widely used,
soft errors can result in hazards or accidents that are life-
threatening [10]. The ever-increasing rate of soft errors in
newer manufacturing technologies can jeopardize the aggres-
sive evolution of GPUs, posing additional challenges. For
example, since GPU applications are written using the Single-
Instruction-Multiple-Threads (SIMT) paradigm, a single tran-
sient fault in a bit-cell of a hardware structure can result in
multiple data corruptions at the application output [11] or
a thread affected by a fault may supply several subsequent
parallel threads with corrupted data [12], [13].

Assessing the impact of soft errors on GPU workloads at
the early (unprotected) GPU design phase is important for
unveiling potentially vulnerable hardware areas that need to
be protected. Reliability assessment can be realized using dif-
ferent techniques which vary in their design maturity and gran-

ularity, the level of accuracy, and the speed of the assessment
process [14]. Simulation is a very widely employed method
for the assessment of the vulnerability to soft errors. GPU
reliability evaluations are often performed on models of the
actual GPU design using simulators [3]–[6], [15], [16]. Highly
detailed and accurate simulation models at the RTL (Register
Transfer Level), gate, or transistor level are extremely slow, not
scalable, and not feasible. Less detailed models, for example
at the microarchitecture level (using cycle-level simulators),
are much faster than low-level highly-detailed models. Higher-
level ISA (Instruction Set Architecture) simulation models,
although faster, are even more abstract (hardware-agnostic).

Assessing the Architectural Vulnerability Factor (AVF) [17]
of each individual microarchitectural structure of a chip during
end-to-end program execution is a comprehensive way to
evaluate the vulnerability of the entire system stack to soft
errors, from the microarchitecture all the way to the software
layers [7]. AVF is the probability that a soft error may produce
an observable error at the application output [18]. Typically,
application resilience is measured by experimental campaigns
based on statistical fault injection (SFI) [19] or using analytical
methods [17]. AVF measurements based on SFI provide useful
and accurate insights for the application reliability profile but
come with a limitation: since AVF measurements are based on
cycle-level, microarchitecture-detailed simulation, obtaining
the AVF of a GPU program is very slow [20].

Software-based vulnerability estimation methods, assuming
software-visible origins of hardware bit flips, are significantly
faster than full-system hardware measurements [21]. The
speed difference can be two orders of magnitude or more.1

These software-level methods derive the Software Vulnerabil-
ity Factor (SVF) [7], representing the probability of a fault
affecting program execution in a dynamic instruction. They
are commonly used under the assumption that (a) reasonably
model the effect of soft errors on the software layer (i.e.,
the overall resilience) and (b) at least provide correct relative
vulnerability comparisons among different workloads. This
work challenges these assumptions and demonstrates that

1For example, the AVF experiments of this study require 1,258 single-core
machine days; SVF experiments take 10 machine days.



neither stands for GPU reliability assessment.
In this paper, we present an unbiased comparison of GPGPU

reliability evaluation at different layers. To the best of our
knowledge, this is the first study that such a cross-layer
analysis has been performed in the GPU domain. We quantify
and explain the diverging estimation results obtained when
assessing the reliability of GPUs at different abstraction layers.
The contributions of this work are summarized as follows:

• We demonstrate the magnitude of measurement errors
introduced by software-level reliability evaluation meth-
ods, compared to the ground-truth, cross-layer AVF anal-
ysis. We employ two state-of-the-art, open-source SFI
frameworks that both focus on NVIDIA GPUs: gpuFI-
4 [3], [22] and NVBitFI [21], [23], which operate at
the microarchitecture level and at the software level,
respectively.

• We conduct a case study to measure the effectiveness of a
strong software-based protection method, Triple Modular
Redundancy (TMR) [24], which aims to eliminate silent
data corruptions (SDCs). Our case study reveals two
major insights: 1) although software-level evaluation (i.e.,
SVF) confirms that SDCs are effectively eliminated, the
cross-layer evaluation (i.e., AVF) shows that some SDCs
still remain despite the heavy penalty of protection in
terms of performance (and thus, energy consumption),
and 2) while most of the SDCs are eliminated, Detected
Unrecoverable Errors (DUEs) instead increase, resulting
frequently in higher vulnerability of the heavily protected
application compared to the unprotected one.

• We provide insights and reasoning about the sources of
error of software-level evaluation methods, which even-
tually lead to diverging results, and provide explanation
on the reasons that lead to such discrepancies.

II. CHARACTERIZATION HIGHLIGHTS

We focus on a single-bit flip fault model for our evaluation.
The differences between AVF and SVF in Fig. 1 are dramatic.
Note the different scales of the vertical axis: AVF absolute
values (the bottom graph) are always much smaller than the
SVF ones (the top graph) because AVF considers the full
hardware masking effects. The focus here is the relative trends
(i.e., the vulnerability ranking of applications) but not the
comparison of the actual vulnerabilities. Trends in SVF and
AVF occasionally align and sometimes diverge. In certain
cases, SVF and AVF produce entirely contrasting vulnerability
estimations. This observation is very important, since such
diverging SVF evaluations may lead designers to decide and
apply a wrong protection scheme in practice. For example,
budgeted protection (i.e., partial protection) is a common
practice [25], [26] which protects only the most vulnerable
components in the system. From SVF, high protection priority
should be given to LUD. However, since the AVF SDC rate
is extremely low, protecting this application from SDCs is un-
necessary and the resources are wasted. Even worse, a wrong-
decided protection scheme can increase the vulnerability of
the application, instead of decreasing it.

0

25

50

75

SV
F 

(%
) DUE

Timeout
SDC

SR
AD

v1

SR
AD

v2

K-
M

ea
ns

Ho
tS

po
t

LU
D

SC
P VA NW

Pa
th

Fi
nd

er

Ba
ck

Pr
op BF
S0

2

4

AV
F 

(%
) DUE

Timeout
SDC

Fig. 1. Application-level comparison: AVF (bottom) and SVF (top).

0

25

50

75

100

SV
F 

(%
)

w/o Hardening
w/ Hardening

SR
AD

v1
 K

1
SR

AD
v1

 K
2

SR
AD

v1
 K

3
SR

AD
v1

 K
4

SR
AD

v1
 K

5
SR

AD
v1

 K
6

SR
AD

v2
 K

1
SR

AD
v2

 K
2

K-
M

ea
ns

 K
1

K-
M

ea
ns

 K
2

Ho
tS

po
t K

1
LU

D 
K1

LU
D 

K2
LU

D 
K3

SC
P 

K1
VA

 K
1

NW
 K

1
NW

 K
2

Pa
th

Fi
nd

er
 K

1
Ba

ck
Pr

op
 K

1
Ba

ck
Pr

op
 K

2
BF

S 
K1

BF
S 

K2

0

2

4

AV
F 

(%
)

Fig. 2. AVF and SVF of hardened applications.

We employ both AVF/SVF methodologies to measure the
effectiveness of a strong software-based protection method,
Triple Modular Redundancy (TMR), which aims to eliminate
SDCs albeit high cost [24]. Fig. 2 shows the AVF and SVF of
kernels with/without hardening. While most kernels demon-
strate improved resilience with the application of software-
based hardening, several kernels exhibit heightened vulnerabil-
ity post-hardening. Some kernels present contradictory trends,
e.g., BackProp K2 shows a slight decrease in SVF, yet the AVF
significantly rises post-hardening. This disparity highlights the
potential for SVF to misleadingly indicate improved reliability.
Meanwhile, TMR aims to rectify SDC fault effects, which
SVF suggests are effectively eliminated. However, we observe
a significant number of SDCs persist even after hardening in
AVF experiments.

We highlight key reasons why higher-level fault injection
methods fail to yield accurate reliability evaluations. In short,
a fault can be initially considered architecturally visible, but
it may eventually turn invisible to the architecture, and thus,
to the software, which changes the distribution of faults that
eventually become architecturally visible. As long as software-
level fault injection tools do not consider this aspect, they fail
to provide correct reliability estimation results.

ACKNOWLEDGMENTS

This material is based upon work supported by the Com-
monwealth Cyber Initiative (CCI) grant (#HC-3Q24-047). This
work was performed in part using computing facilities at
William & Mary. Jog contributed to this work primarily while
he was with William & Mary. This work was supported by the
Hellenic Foundation Research and Innovation (HFRI) project
VEMER.



REFERENCES

[1] A. Arunkumar, E. Bolotin, D. Nellans, and C.-J. Wu, “Understanding
the future of energy efficiency in multi-module GPUs,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2019, pp. 519–532.

[2] L. Yang, B. Nie, A. Jog, and E. Smirni, “Practical resilience analysis
of GPGPU applications in the presence of single- and multi-bit faults,”
IEEE Transactions on Computers, vol. 70, no. 1, pp. 30–44, 2021.

[3] D. Sartzetakis, G. Papadimitriou, and D. Gizopoulos, “gpuFI-4: A
microarchitecture-level framework for assessing the cross-layer re-
silience of nvidia gpus,” in 2022 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2022, pp. 35–
45.

[4] S. Tselonis and D. Gizopoulos, “GUFI: A framework for GPUs reli-
ability assessment,” in Performance Analysis of Systems and Software
(ISPASS), 2016 IEEE International Symposium on. IEEE, 2016, pp.
90–100.

[5] B. Nie, L. Yang, A. Jog, and E. Smirni, “Fault site pruning for practi-
cal reliability analysis of GPGPU applications,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2018, pp. 749–761.

[6] L. Yang, B. Nie, A. Jog, and E. Smirni, “SUGAR: Speeding up GPGPU
application resilience estimation with input sizing,” Proceedings of the
ACM on Measurement and Analysis of Computing Systems, vol. 5, no. 1,
pp. 1–29, 2021.

[7] G. Papadimitriou and D. Gizopoulos, “Demystifying the system vulnera-
bility stack: Transient fault effects across the layers,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA),
2021, pp. 902–915.

[8] Y. Ibrahim, H. Wang, M. Bai, Z. Liu, J. Wang, Z. Yang, and Z. Chen,
“Soft error resilience of deep residual networks for object recognition,”
IEEE Access, vol. 8, pp. 19 490–19 503, 2020.

[9] J. Athavale, A. Baldovin, R. Graefe, M. Paulitsch, and R. Rosales, “AI
and reliability trends in safety-critical autonomous systems on ground
and air,” in 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W), 2020, pp. 74–
77.

[10] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network (DNN) accelerators and applications,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2017, pp. 1–12.

[11] P. Rech, T. D. Fairbanks, H. M. Quinn, and L. Carro, “Threads
distribution effects on graphics processing units neutron sensitivity,”
IEEE Transactions on Nuclear Science, vol. 60, no. 6, pp. 4220–4225,
2013.

[12] G. Li, K. Pattabiraman, C.-Y. Cher, and P. Bose, “Understanding error
propagation in GPGPU applications,” in High Performance Computing,
Networking, Storage and Analysis, SC16: International Conference for.
IEEE, 2016, pp. 240–251.

[13] G. Kadam, E. Smirni, and A. Jog, “Data-centric Reliability Management
in GPUs,” in the Proceedings of 51st International Conference on
Dependable Systems and Networks (DSN), Virtual Event, June 2021,
pp. 271–283.

[14] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra,
“Quantitative evaluation of soft error injection techniques for robust
system design,” in Proceedings of the 50th Annual Design Automation
Conference. ACM, 2013, p. 101.

[15] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
“SASSIFI: Evaluating resilience of GPU applications,” in Proceedings
of the Workshop on Silicon Errors in Logic-System Effects, 2015.

[16] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “GPU-Qin: A
methodology for evaluating the error resilience of GPGPU applications,”
in Performance Analysis of Systems and Software (ISPASS), 2014 IEEE
International Symposium on. IEEE, 2014, pp. 221–230.

[17] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerabil-
ity factors for a high-performance microprocessor,” in Proceedings.
36th Annual IEEE/ACM International Symposium on Microarchitecture,
2003. MICRO-36. IEEE, 2003, pp. 29–40.

[18] N. Farazmand, R. Ubal, and D. Kaeli, “Statistical fault injection-based
AVF analysis of a GPU architecture,” in Silicon Errors in Logic – System
Effects (SELSE), 2012.

[19] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical
fault injection: Quantified error and confidence,” in Proceedings of the
Conference on Design, Automation and Test in Europe. European
Design and Automation Association, 2009, pp. 502–506.

[20] C. Avalos Baddouh, M. Khairy, R. N. Green, M. Payer, and T. G.
Rogers, “Principal kernel analysis: A tractable methodology to simulate
scaled GPU workloads,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
724–737. [Online]. Available: https://doi.org/10.1145/3466752.3480100

[21] T. Tsai, S. K. S. Hari, M. Sullivan, O. Villa, and S. W. Keckler,
“NVBitFI: dynamic fault injection for gpus,” in 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN). IEEE, 2021, pp. 284–291.

[22] (2022) gpuFI-4 github repository. [Online]. Available:
https://github.com/caldi-uoa/gpuFI-4

[23] (2021) NVBitFI github repository. [Online]. Available:
https://github.com/NVlabs/nvbitfi

[24] A. Milluzzi and A. George, “Exploration of TMR fault masking with
persistent threads on Tegra GPU SoCs,” in 2017 IEEE Aerospace
Conference. IEEE, 2017, pp. 1–7.

[25] L. Yang, B. Nie, A. Jog, and E. Smirni, “Enabling software resilience in
GPGPU applications via partial thread protection,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE,
2021, pp. 1248–1259.

[26] M. H. Rahman, A. Shamji, S. Guo, and G. Li, “Peppa-x: finding
program test inputs to bound silent data corruption vulnerability in hpc
applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2021, pp.
1–13.


