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Abstract—Graphics Processing Units (GPUs) have rapidly evolved to enable energy-efficient data-parallel computing for a broad
range of scientific areas. While GPUs achieve exascale performance at a stringent power budget, they are also susceptible to soft
errors, often caused by high-energy particle strikes, that can significantly affect the application output quality. Understanding the
resilience of general purpose GPU (GPGPU) applications is especially challenging because unlike CPU applications, which are mostly
single-threaded, GPGPU applications can contain hundreds to thousands of threads, resulting in a tremendously large fault site space
in the order of billions, even for some simple applications and even when considering the occurrence of just a single-bit fault. We
present a systematic way to progressively prune the fault site space aiming to dramatically reduce the number of fault injections such
that assessment for GPGPU application error resilience becomes practical. The key insight behind our proposed methodology stems
from the fact that while GPGPU applications spawn a lot of threads, many of them execute the same set of instructions. Therefore,
several fault sites are redundant and can be pruned by careful analysis. We identify important features across a set of 10 applications
(16 kernels) from Rodinia and Polybench suites and conclude that threads can be primarily classified based on the number of the
dynamic instructions they execute. We therefore achieve significant fault site reduction by analyzing only a small subset of threads that
are representative of the dynamic instruction behavior (and therefore error resilience behavior) of the GPGPU applications. Further
pruning is achieved by identifying the dynamic instruction commonalities (and differences) across code blocks within this representative
set of threads, a subset of loop iterations within the representative threads, and a subset of destination register bit positions. The above
steps result in a tremendous reduction of fault sites by up to seven orders of magnitude. Yet, this reduced fault site space accurately
captures the error resilience profile of GPGPU applications. We show the effectiveness of the proposed progressive pruning technique
for a single-bit model and illustrate its application to even more challenging cases with three distinct multi-bit fault models.

Index Terms—GPGPU Applications, Reliability Analysis, Fault Site Pruning
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1 INTRODUCTION

PARALLEL Hardware Accelerators such as Graphics Pro-
cessing Units (GPUs) are becoming an inevitable part

of every computing system because of their ability to pro-
vide fast and energy-efficient execution for many general-
purpose applications. GPUs work on the philosophy of
Single Instruction, Multiple Threads (SIMT) programming
paradigm [1] and schedule multiple threads on a large
number of processing elements (PEs). Thanks to very large
available parallelism, GPUs are used in accelerating inno-
vations in various fields such as high-performance com-
puting (HPC), artificial intelligence, deep learning, and vir-
tual/augmented reality. Given the wide-spread adoption
of GPUs in many Top500/Green500 supercomputers and
cloud data centers, it is becoming increasingly important
to develop tools and techniques to evaluate the reliability
of such systems, especially since GPUs are susceptible to
transient faults from high-energy particle strikes [2], [3], [4].

The typical approach to evaluate general purpose GPU
(GPGPU) application resilience is by artificially but system-
atically injecting faults into various registers and then by
examining their effects on the application output. These
faults can result in: a) no change in application output (i.e.,
faults are masked), b) change in output due to data cor-
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ruption while execution terminates successfully (i.e., faults
are silent), and c) application crashes and hangs. With the
exception of approximate computing where some execu-
tions that result in silent faults may be acceptable to the
user [5], silent faults and crashes are considered undesirable.
Consequently, high-overhead protection mechanisms such
as check-pointing [6] and error correction codes (ECC) [7]
are employed to strive for reliable application execution.

One of the major challenges in evaluating error resilience
of applications even in the presence of a single-bit fault
during the application execution is to obtain a very high
fault coverage, i.e., inject a fault in all possible fault sites and
record its effect. This procedure is very time consuming and
tedious, especially in light of the fact that the total space of
fault sites can be in the order of billions. Assuming a single-bit
flip model, Table 1 quantifies the total number of fault injec-
tion sites for a large number of diverse GPGPU application
kernels. The tremendous size of single-bit fault sites is due
to the fact that each GPGPU kernel can spawn thousands
of application threads and each thread is assigned to a
dedicated amount of on-chip resources. For the calculation
of fault sites reported in Table 1, we only consider soft errors
that can occur in functional units (e.g., arithmetic logic unit
and load-store unit) that are not protected by ECC [8]. Yet,
the number of fault sites even for the single-bit case is
tremendous, making an exhaustive approach absolutely not
practical.
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TABLE 1: Various metrics (including the total number of possible fault sites) in the presence of a single-bit fault.
Suite Application Kernel Name ID # Threads # Total Fault Sites

Rodinia

HotSpot calculate temp K1 9216 3.44E+07

K-Means invert mapping K1 2304 1.47E+07
kmeansPoint K2 2304 9.67E+07

Gaussian Elimination

Fan1 K1 512 1.63E+05
Fan2 K2 4096 4.92E+06
Fan1 K125 512 1.09E+05
Fan2 K126 4096 8.79E+05

PathFinder dynproc kernel K1 1280 2.77E+07

LU Decomposition (LUD)
lud perimeter K44 32 1.75E+06
lud internal K45 256 6.84E+05
lud diagonal K46 16 5.26E+05

Polybench

2DCONV Convolution2D kernel K1 8192 6.32E+06
MVT mvt kernel1 K1 512 6.83E+07
2MM mm2 kernel1 K1 16384 5.55E+08

GEMM gemm kernel K1 16384 6.23E+08
SYRK syrk kernel K1 16384 6.23E+08

In order to develop a robust and practical reliability
evaluation for GPUs, prior works have considered a variety
of fault injection methodologies such as LLFI-GPU [9] and
SASSIFI [8] that sample a random subset of 1,000 fault
sites to capture a partial view of the overall error resilience
characteristics with 95% confidence intervals and error mar-
gins within a 6% range [10]. Here, we take an orthogonal
approach – our goal is to prune the tremendously large
fault site space using properties of GPGPU applications. Our
pruning mechanism dramatically reduces the total number
of required fault injections, in some cases to a few hundreds
only while still maintaining superior accuracy.

To this end, we focus on the following fundamental
observations relevant to GPGPU applications: a) GPGPU
applications follow the SIMT execution style that allow
many threads to execute the same set of instructions with
slightly different input values, b) There is ample common-
ality in code across different threads, c) Each GPU thread
can have several loop iterations that do not necessarily
change the register states significantly, and d) changes in
the precision/accuracy of register values do not necessarily
change the final output of an application. By leveraging
these properties, we propose a progressive pruning that
preserves the application error resilience characteristics and
consists of the following steps:
• Thread-wise Pruning: The first step focuses on reducing

the number of threads for fault injection. We find that
a lot of threads in a kernel have similar error resilience
characteristics because they execute the same number and
type of dynamic instructions. Based on the grouping of
threads based on their dynamic instruction count, we select
a small set of representative threads per kernel and prune
the redundant fault sites belonging to other threads.
• Instruction-wise Pruning: Many of these selected repre-

sentative threads still execute subsets of dynamic instruc-
tions that are identical across threads. This implies that the
replicated subsets across threads can be considered only
once. Therefore, the replicated fault sites are pruned while
preserving the application error resilience characteristics.
• Loop-wise and Bit-wise Pruning: We observe that there is

a significant redundancy in fault sites across loop iterations
and register bit positions. Therefore, such redundant fault
sites can be further pruned while accurately capturing the

application error resilience characteristics.
We illustrate the effectiveness of the proposed method-

ology by showing that is able to reduce the fault site space
by up to seven orders of magnitude while maintaining
accuracy that is close to that of ground truth. In addition, we
further investigate three multi-bit fault models: (1) multi-
bit faults in the same word, (2) multiple single-bit faults
occurring in the same thread, and (3) multiple single-bit
faults on different threads. We illustrate that the proposed
progressive fault site pruning technique can be readily
extended to capture the error resilience characteristics of
GPGPU applications for multi-bit fault models.
2 BACKGROUND AND METHODOLOGY

Baseline GPU Architecture. A typical GPU consists of
multiple cores, also called streaming-multiprocessors (SMs)
in NVIDIA terminology. Each core is associated with private
L1 data, texture and constant caches, software-managed
scratchpad memory, and a large register file. The cores are
connected to memory channels (partitions) via an intercon-
nection network. Each memory partition is associated with
a shared L2 cache, and its associated memory requests are
handled by a GDDR5 memory controller. Recent commer-
cial GPUs typically employ single-error-correction double-
error-detection (SEC-DED) error correction codes (ECCs) to
protect register files, L1/L2 caches, shared memory and
DRAM against soft errors, and use parity to protect the
read-only data cache. Other structures like arithmetic logic
units (ALUs), thread schedulers, instruction dispatch unit,
and interconnect network are not protected [7].
GPGPU Applications and Execution Model. GPGPU ap-
plications leverage the single-instruction-multiple-thread
(SIMT) philosophy and concurrently execute thousands of
threads over large amounts of data to achieve high through-
put. A typical GPGPU application execution starts with the
launch of kernels on the GPU. Each kernel is divided into
groups of threads, called thread blocks, which are also known
as Cooperative Thread Arrays (CTAs) in CUDA terminology. A
CTA encapsulates all synchronization and barrier primitives
among a group of threads [11]. Having such an abstraction
allows the underlying hardware to relax the execution order
of the CTAs to maximize parallelism.

We selected applications from commonly used suites
(i.e., Rodinia [12] and Polybench [13]) that cover a vari-
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ety of workloads. As kernels of GPGPU applications im-
plement independent modules/functions, we perform re-
silience analysis separately for each kernel. We focus on
every static application kernel. For static kernels with more
than one dynamic invocations, we randomly select one for
fault injection experiments. Table 1 shows the evaluated 10
applications (16 kernels). In the rest of this paper, if the
kernel index is not specified, it implies that the application
contains only one kernel.

2.1 Baseline Fault Injection Methodology
We employed a robust fault injection methodology based on
GPGPU-Sim [14], a widely-used cycle-level GPU architec-
tural simulator. The usability of GPGPU-Sim with PTXPlus
mode (which provides a one-to-one instruction mapping to
actual ISA for GPUs [14], [15]) for reliability assessment is
validated by GUFI [15], a GPGPU-Sim based framework.
We inject faults using GPGPU-Sim with the PTXPlus mode.

For each experiment, we examine the application output
to understand the effect of the injected fault. We classify the
outcome of a fault injection into: (1) masked output, where
the injected fault leads to no change in the application
output, (2) silent data corruption (SDC) output, where the
injected fault allows the application to complete successfully
albeit with an incorrect output, and (3) other output, where
the injected fault results in application hangs or crashes.
The distribution (or percentage) of fault injection outcomes
in these three different categories form the error resilience
profile of a GPGPU application.

2.2 Baseline Fault Model
We focus on injecting faults in the destination registers to
mimic the effect of soft errors occurred in the functional
units (e.g., arithmetic and logic units (ALUs) and the load-
store units (LSUs)) [8], [16]. The destination registers and
associated storage are identified by thread id, instruction
id, and bit position. Table 1 shows the number of threads
spawned by each kernel and the total number of fault
sites (also called fault coverage). The fault coverage for
each application kernel (consisting of N threads) is calcu-
lated using Equation (1). Suppose that a target thread t
(t ∈ [1, N ]) consists of M(t) dynamic instructions and that
the number of bits in the destination register of instruction
i (i ∈ [1,M(t)]) is bit(t, i). The number of exhaustive fault
sites is the summation of every bit in every instruction from
every thread in the kernel:

FaultCoverage =
N∑
t=1

M(t)∑
i=1

bit(t, i). (1)

This number for the GPGPU kernels that we consider here is
reported in the rightmost column of Table 1. These numbers
are obtained under the context of a single-bit fault model.
We start with the single-bit fault model to build a fault site
pruning technique. Then, we extend the proposed technique
to our multi-bit fault model.

2.3 Statistical Considerations
Looking at the number of exhaustive fault sites shown in
Table 1, it is clear that it is not practical to perform fault
injection runs for all fault sites. This is especially true when

application execution time is very long. Taking GEMM from
Polybench as an example and assuming that it takes (nom-
inal) one minute to execute one fault injection experiment,
then 7.73E+08 minutes (or about 1331 years) are needed to
complete experiments for the entire fault site space (see the
first row in Table 2). Therefore, it is desirable to reduce the
number of fault injection experiments but also guarantee
a statistically sound resilience profile (i.e., percentages of
masked, SDC, and other outputs – see Section 2.1) of the
considered kernel. Prior work [10] has shown that given
an initial population size N (in our case, N is the number
of exhaustive fault sites), a desired error margin e, and a
confidence interval (expressed by the t-statistic), the number
of required experiments n (in our case, fault sites) is:

n =
N

1 + e2 × N−1
t2×p×(1−p)

. (2)

Note that p in the above equation is the program vulnera-
bility factor, i.e., the percentage of fault injection outcomes
that are in the masked output category. If n � N , (e.g.,
if the percentage of samples is less than 5% of the entire
population), then N can be approximated by ∞, resulting
in the following equation [17]:

lim
N→∞

n = lim
N→∞

N

1 + e2 × N−1
t2×p×(1−p)

=
t2

e2
×p×(1−p). (3)

Since p is the result of fault injection experiments, p is
still unknown. To ensure that the number of fault injection
experiments n is sufficient to capture the true p [10], then

n = max{ t
2

e2
× p× (1− p)} = t2

4× e2
, (4)

where n is the minimum sample size (i.e., number of fault
injection experiments) required to calculate the fraction of
fault injection outcomes in the masked output category, with
a certain confidence interval and a user-given error margin
e. To maximize the term p× (1− p), p is set to 0.5.

Table 2 presents the required number of fault injection
experiments (i.e., fault sites) in GEMM given a confidence
interval and an error margin. We consider the reliability
profile results of 60K experiments (with 99.8% confidence
interval and an error margin of e = 0.63%) as the ground
truth [18]. Clearly, there is a significant discrepancy between
the percentage of masked outputs for 60K versus 1K fault
injections (see last column). Similarly to techniques in the
CPU domain that aim at high accuracy [18], the goal of fault
site pruning is to achieve the accuracy of the 60K results but
with a much reduced number of experiments. Indeed, as we
show in later sections for the 13 out of the 16 kernels that
we analyzed here, we achieve the high accuracy of ground
truth but with 1K experiments or less, for some kernels with
as few as 318 experiments only (see Figure 10).

TABLE 2: Fault sites and other statistics for GEMM.

Confidence
Interval

Error
Margin

# Fault
Sites

Estimated
Time

Masked
Output (%)

100% 0.0% 7.73E+08 1331 years ?
99.8% ±0.63% 60,181 40 days 24.2%
95% ±3.0% 1,062 16 hours 21.6%
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Fig. 1: Overview our Fault Site Pruning Mechanism.

3 PROGRESSIVE FAULT SITE PRUNING
Figure 1 provides an overview of our fault site pruning
four-stage mechanism. This mechanism is progressive, i.e.,
every successive stage further reduces the number of fault
sites of the previous one. There are four primary stages: a)
Thread-wise Pruning, b) Instruction-wise Pruning, c) Loop-wise
Pruning, and d) Bit-wise Pruning. In each stage as depicted in
Figure 1, black parts represent the selected fault sites while
the gray parts represent the pruned ones.

In the first stage, we perform a) thread-wise pruning where
kernel threads are classified into different groups. This
classification is based on the distribution of fault injection
outcomes: threads in the same group share a similar appli-
cation error resilience profile. From each group, we are able
to randomly select one thread as the group representative.
In Section 3.1, we show that the dynamic instruction (DI)
count per thread can be used as proxy for effective thread
classification. We classify threads based on their dynamic
instruction count into several groups, then select one repre-
sentative (i.e., one black thread) per group.

Next, we perform b) instruction-wise pruning, which
leverages common blocks of code that are shared among the
selected representative threads of the previous pruning step.
Because of the SIMT nature of the GPU execution model,
many threads execute the same subsets of instructions.
These common instruction blocks are likely to have similar
resilience (discussed further in Section 3.2), thus become
candidates for pruning (see gray segments in Figure 1, stage
b) Instruction-wise Pruning). Black segments are selected for
fault injection and move to the next pruning stage.

In the subsequent stage, loop-wise pruning, we identify
loops in the threads that are selected from the previous
stage and we randomly sample several loop iterations to
represent the entire loop block (we elaborate on how we do
this sampling in Section 3.3). Within each loop, we are able
to use a part of representative iterations (marked as black)
and discard the rest (marked as gray), see Figure 1 stage c.

As a last step, with bit-wise pruning, we consider several
pre-selected bit positions for fault injection. These bit posi-
tions are selected to cover a range of positions in registers
to further reduce the fault site space (Section 3.4 gives the
rationale behind the bit position selection). Similarly, to the
rest of Figure 1, black bit positions are the selected fault
sites while gray ones are pruned. Overall, Figure 1 gives a
road-map of the progressive pruning steps.

3.1 Thread-Wise Pruning

GPGPU applications typically spawn thousands of threads.
Therefore, injecting faults to all thread registers is not prac-
tical. To this end, we classify threads into groups that share
similar resilience behavior. The challenge here is to choose
an effective metric that can be easily extracted from the
application to guide this classification.

In order to develop a classification process, we study
the error resilience characteristics of CTAs and threads of
a kernel through a fault injection of over 2 million fault
injection runs. We investigate the fault resilience features
hierarchically, at the CTA-, thread-, and instruction-level. Our
analysis illustrates that: 1) a few representative CTAs and
threads can capture the error resilience characteristics of the
entire kernel and 2) the number of dynamic instructions per
thread (iCnt) can be used as an effective classifier to identify
representative threads and guide the first pruning step.

3.1.1 CTA-wise Pruning
We first focus on understanding the error resilience char-
acteristics at the CTA level. Although it is not feasible to
perform an exhaustive fault injection campaign at this level,
it is relatively manageable to run exhaustive experiments
for target instructions. We select a diverse set of dynamic
instructions including memory access (e.g., ld), arithmetic
(e.g., add and mad), logic (e.g., and and shl), and special
functional instructions (e.g., rcp), and from different code
locations (e.g., beginning, middle, and end). Although the
fault sites are already reduced by targeting certain instruc-
tions and narrowing down to few locations, the number of
(reduced) fault sites per kernel is still large, e.g., 1, 217K for
HotSpot, 774K for 2DCONV, 412K for K-Means.

We resort to Equation 4 to obtain n=60K random
samples for every target instruction in a kernel. We use
2DCONV and HotSpot, which are diverse in terms of
number of threads and similarity across threads. For each
application kernel, we manually select 5 instructions that
cover the aforementioned diversity, resulting in 300K fault
injection runs per application kernel. Figure 2(a)-(b) shows
the grouping results given by one target instruction for
2DCONV and HotSpot, respectively. The results for the
remaining four target instructions are not shown for brevity.

Figure 2(a) shows the distribution of fault injection out-
comes for all 32 CTAs in 2DCONV. CTAs are listed in the or-
der of their launching time along the x-axis. For every CTA,
we calculate the percentage of masked outputs (percentage
of SDC and other outputs are not shown) for each of its 256
threads and show the distribution of masked outputs using
boxplots (i.e., one boxplot for each CTA to illustrate salient
points in the distribution of masked outputs, including the
25th and 75th percentiles, and the mean and median). We
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C-1 C-2 C-3

(a) 2DCONV (line=34, opcode=mad)

C-1 C-2 C-3C-4 C-8 C-9 C-10 C-4

(b) HotSpot (line=52, opcode=add)

Fig. 2: CTA grouping after 60K fault injection runs of one
target instruction for (a) 2DCONV and (b) HotSpot. CTAs
with the same color are classified into the same group.

observe that CTAs exhibit three distinct distributions as
given by the different shapes of boxplots. Each group is
marked by a different color. Therefore, 3 CTAs (one per
group) is sufficient to represent the entire kernel. Similarly,
Figure 2(b) shows the CTA grouping results for HotSpot.
There are 36 CTAs in total, each containing 256 threads. For
clarity, we show a few CTAs only. We observe that HotSpot
has more diverse CTAs than 2DCONV and hence we classify
its CTAs into 10 groups (C-1 to C-10).

Although the experiments illustrated in Figure 2 point
to a promising methodology to obtain a first-order CTA
grouping, it is obtained with 300K fault injection runs per
kernel. This is still not always practical, as one can always
opt to the random fault injection campaign [10], which
requires 60K runs. Therefore, it is imperative to find an
effective metric to guide pruning. We show that the number
of dynamic instructions per thread (iCnt) is an alternative
good measure for thread classification. This is encouraging
as only one fault-free execution is sufficient to collect all the
required iCnt information.

Figure 3(a)-(b) shows the distribution of thread iCnt per
CTA for 2DCONV and Hotspot. Recall that each boxplot in
Figure 2 represents the distribution of percentage of masked
outputs. Similarly here, we are able to classify the CTAs
into the same groups as in Figure 2 (both Figure 2 and 3
use the same color-code). Tables 3 and 4 report the grouping
results guided by the average thread iCnt per CTA (given
by Figure 3) for 2DCONV and HotSpot, respectively (see
the left three columns). The above results confirm that iCnt
is effective in capturing the error resilience characteristics at
the CTA-level. Based on the grouping guided by iCnt, only
a few CTAs per kernel are sufficient to capture the entire
picture. We have conducted similar experiments for other
application kernels (not shown here due to lack of space)
that overwhelmingly support the above conclusion.

C-1 C-2 C-3

(a) 2DCONV

C-1 C-2 C-3C-4 C-8 C-9 C-10 C-4

(b) HotSpot

Fig. 3: CTA grouping given by average dynamic thread
instruction count (iCnt) per CTA for (a) 2DCONV and (b)
HotSpot. CTAs with the same color are classified into the
same group. The CTA classification is the same as the one
observed in Figure 2.

TABLE 3: CTA and thread groups for 2DCONV.

CTA
Grp.

Avg.
iCnt

CTA
Proportion

Thd.
Grp. Thd. iCnt Thd.

Proportion*

T-11 13 12.50%
C-1 43 6.25% T-12 15 2.73%

T-13 48 84.77%

C-2 47 43.75%
T-21 15 3.13%
T-22 48 96.87%

C-3 11 50.00% T-31 11 100.00%

* For each CTA group, we show its percentage of threads belonging to
the corresponding thread group.

Observation-1: A few CTAs are enough to capture the
error resilience characteristics of a kernel. These CTAs are
selected based on the average thread dynamic instruction
count (iCnt).

3.1.2 Thread-wise Pruning
By narrowing down to only a few CTAs in a kernel, we are
able to significantly reduce the number of fault sites. Yet,
an exhaustive fault injection campaign using all threads in
selected CTA representatives is still not viable. For example,
for a CTA with 256 threads, if each thread executes an
average of 100 dynamic instructions and if all destination
registers are 32-bit wide, then a total of 819, 200 runs are
needed. We continue the thread classification within each
CTA in order to select only a few representative threads.
We classify threads inside a CTA using (1) a large number
of fault injection runs and (2) iCnt and confirm that the
two methods lead to the same thread grouping results, see
Figure 4. In other words, thread iCnt is also effective within
a CTA to classify threads.

Figure 4(a) shows results for 2DCONV. Each blue dot
represents the percentage of masked outputs in that thread
(left y-axis) and each red dot indicates the corresponding
thread iCnt (right y-axis). We mark threads in the same
group with the same color. We observe a clear repeating pat-
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TABLE 4: CTA and thread groups for HotSpot.

CTA
Grp.

Avg.
iCnt

CTA
Proportion

Thd.
Grp.

Thd. iCnt
Range

Thd.
Proportion*

T-11 77− 98 23.44%
C-1 154 2.78% T-12 111− 115 10.55%

T-13 183 66.02%
T-21 77− 90 12.50%

C-2 159 8.33% T-22 108− 115 16.41%
T-23 183 71.09%
T-31 77− 103 45.31%

C-3 137 2.78% T-32 108− 115 8.98%
T-33 183 45.70%

C-4 99 30.56%
T-41 77− 99 28.91%
T-42 103 71.09%

C-5 160 8.33%

T-51 89− 111 18.75%
T-52 113 5.08%
T-53 115 5.08%
T-54 183 71.09%

C-6 166 25.00%

T-61 108 6.25%
T-62 111 6.25%
T-63 113− 115 10.94%
T-64 183 76.56%
T-71 95− 108 43.75%

C-7 143 8.33% T-72 113− 115 7.03%
T-73 183 49.22%
T-81 80− 98 45.31%

C-8 135 2.78% T-82 111− 113 8.98%
T-83 183 45.70%
T-91 80− 95 37.50%

C-9 139 8.33% T-92 108− 113 13.28%
T-93 183 49.22%
T-101 80− 103 60.94%

C-10 124 2.78% T-102 108− 113 7.42%
T-103 183 31.64%

* For each CTA group, we show its percentage of threads belonging to
the corresponding thread group.

Thread	ID

Thread	Insn.	Cnt.PCT.	MASKED T-21 T-22

(a) 2DCONV: CTA Group C-2
T-91 T-92 T-93

Thread	ID

Thread	Insn.	Cnt.PCT.	MASKED

(b) HotSpot: CTA Group C-9

Fig. 4: Thread Grouping inside one CTA.

tern that allows for classifying all threads into two distinct
groups (green and white), see Figure 4(a)):

1) T-21: threads with iCnt=15 and percentage of masked
outputs at around 100%.

2) T-22: threads with iCnt=48 and percentage of masked
outputs between 20% to 30%.

Table 3 reports the thread grouping details for 2DCONV
(right three columns). A potential reason for such similarity
in the distribution of fault injection outcomes among threads
with different iCnt is the fact that these threads share large
common code blocks, this is further discussed in Section 3.2.

Figure 4(b) shows that threads in HotSpot can be also
classified into several groups (Table 4). Due to the complex-

ity of this kernel, we merge thread groups with similar iCnt
together for visualization purposes, resulting in 3 distinct
groups: green, yellow, and white. During the actual fault
injection campaign, we still classify threads based on their
exact iCnt (a total of 87 thread groups across selected CTAs)
and select one representative thread per group.

It is important to perform the grouping in two steps: first
at the CTA level and then at the thread level. Through our
fault injection runs, we find that threads with the same iCnt
from different CTAs could have different instructions and
thus show different distribution of fault injection outcomes
(this is observed in HotSpot and Gaussian K2). Therefore,
the step of CTA-wise grouping cannot be skipped.

Observation-2: Threads can be further classified within a
CTA. A few threads within a CTA are able to represent the
CTA’s error resilience characteristics.

3.2 Instruction-Wise Pruning
Our analysis shows that different threads normally share
a large portion of common instructions. We aim to further
prune the fault sites by finding common instruction blocks
among the resulted set of thread representatives after the
thread-wise pruning stage. We illustrate this observation us-
ing PathFinder. Figure 5 shows instruction snippets of its
two representative threads (“a” and “b”) chosen from the
previous pruning stage. Comparing their PTXPlus code,
lines 1 to 53 are the same; thread “a” has 17 more instruc-
tions in the middle; at the end, all the remaining 463 lines
across the two threads are also the same.

Thread “a” (!"#$ = 533) Thread “b” (!"#$ = 516)
1 shl.u32 $r3, s[0x0010], 0x00000001 1 shl.u32 $r3, s[0x0010], 0x00000001
2 cvt.u32.u16 $r1, %ctaid.x 2 cvt.u32.u16 $r1, %ctaid.x
3 add.u32 $r3, -$r3, 0x00000100 3 add.u32 $r3, -$r3, 0x00000100
4 mul.wide.u16 $r4, $r1.lo, $r3.hi 4 mul.wide.u16 $r4, $r1.lo, $r3.hi
5 mad.wide.u16 $r4, $r1.hi, $r3.lo, $r4 5 mad.wide.u16 $r4, $r1.hi, $r3.lo, $r4

…… ……
49 cvt.s32.s32 $r2, -$r2 49 cvt.s32.s32 $r2, -$r2
50 and.b32 $p0|$o127, $r5, $r2 50 and.b32 $p0|$o127, $r5, $r2
51 ssy 0x00000228 51 ssy 0x00000228
52 mov.u32 $r2, $r124 52 mov.u32 $r2, $r124
53 @$p0.eq bra l0x00000228 53 @$p0.eq bra l0x00000228
54 add.half.u32 $r7, s[0x0038], $r1
55 mov.half.u32 $r2, s[0x0030]
56 mul.wide.u16 $r8, $r2.lo, $r7.hi
57 mad.wide.u16 $r8, $r2.hi, $r7.lo, $r8
58 shl.u32 $r8, $r8, 0x00000010

……
66 min.s32 $r7, s[$ofs2+0x0040], $r8
67 ld.global.u32 $r2, [$r2]
68 add.u32 $r2, $r2, $r7
69 mov.u32 s[$ofs3+0x0440], $r2
70 mov.u32 $r2, 0x00000001
71 l0x00000228: nop 54 l0x00000228: nop
72 bar.sync 0x00000000 55 bar.sync 0x00000000
73 set.eq.s32.s32 $p0/$o127, $r6, $r1 56 set.eq.s32.s32 $p0/$o127, $r6, $r1
74 @$p0.ne bra l0x000002b8 57 @$p0.ne bra l0x000002b8
75 set.ne.s32.s32 $p1/$r1, $r2, $r124 58 set.ne.s32.s32 $p1/$r1, $r2, $r124

…… ……
529 set.eq.s32.s32 $p0/$o127, $r6, $r1 512 set.eq.s32.s32 $p0/$o127, $r6, $r1
530 @$p0.ne bra l0x000002b8 513 @$p0.ne bra l0x000002b8
531 l0x000002b8: set.ne.s32.s32 $p0/$o127, $r2, 

$r124 514 l0x000002b8: set.ne.s32.s32 $p0/$o127, $r2, 
$r124

532 bra l0x000002c8 515 bra l0x000002c8
533 l0x000002c8: @$p0.eq retp 516 l0x000002c8: @$p0.eq retpz

Fig. 5: PTXplus code of two representative threads for
PathFinder. Blue lines indicate common instructions.

Table 5 shows the percentage of masked and SDC outputs
for PathFinder if soft errors are injected in their common portion
only. The distributions of fault injection outcomes that stem
from this common block are quite close (see columns 4 and
5 in the table). Naturally, fault injections have to occur in
the entire body of thread “a” to calculate its resilience, but
since there is a common code block across the two threads, it
can be used to extrapolate the distribution of fault injection
outcomes of thread “b”. This eliminates the need to inject
faults in thread “b” and essentially prunes the fault sites
generated for this thread. We introduce −0.078% error for
the percentage of masked outputs and −0.031% error for the
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TABLE 5: Effect of instruction-wise pruning for two threads.

Application Thread % % %
Common Insn. MSK SDC

PathFinder a 92.1% 89.4% 0.0%
b 100.0% 90.1% 0.4%

percentage of SDC outputs (both minimal variations), but
with a significant reduction of 12, 344 fault sites.

To confirm that this behavior persists across kernels,
we conduct exhaustive experiments across the fault site
space after CTA-wise and thread-wise pruning and confirm
that common blocks of instructions across threads share a
surprisingly similar distribution of fault injection outcomes
(Table 6). The third column of Table 6 shows the percent-
age of pruned common instructions, and the 4th and 5th
columns show the error of pruned results, compared to
the exhaustive experiments before pruning common instruc-
tion blocks. Table 6 shows that the percentage of common
instructions pruned in applications kernels ranges from
42.86% to 92.81% and that the error introduced by pruning
common instruction blocks for masked and SDC outputs is
−0.15% and −0.1%, respectively.

TABLE 6: Summary of instruction-wise pruning.

Application Kernel % Pruned Introduced Error
Common Insn. MSK SDC

HotSpot K1 92.81% -0.14% 0.14%
PathFinder K1 92.80% 0.03% -0.09%

LUD k46 80.00% -0.78% -0.70%
2DCONV k1 66.67% 0.09% -0.09%
Gaussian K2 62.50% -0.13% 0.13%
Gaussian K126 42.86% 0.00% 0.00%

Average 72.94% -0.15% -0.10%

Note that several application kernels (e.g., 2MM, MVT,
SYRK, and GEMM) after thread-wise pruning end up with
only one representative thread. These kernels are not suit-
able for instruction-wise pruning and are therefore not
included in the table. For Gaussian K1 and K2, and K-
Means K1, instruction-wise pruning is also not applicable.
For these application kernels, there are two representative
threads, one with very few instructions (i.e., less than 10)
and other with many (i.e., hundreds or thousands), leaving
few opportunities to explore code commonality.

Observation-3: Different representative threads may share
significant portions of common instructions. Therefore,
distributions of fault injection outcomes of these common
portions are similar. Consequently, a large number of fault
sites can be pruned while achieving significant accuracy.

3.3 Loop-Wise Pruning
Table 7 shows the total number of instructions and the num-
ber of loop iterations. The kernels are sorted in increasing
order by the portion of instructions in loops (after the loop
is unrolled). Excluding kernels with no loops, a large portion
of instructions in a kernel come from loop iterations, ranging
from 65.79% in LUD K46 to 99.71% in MVT. We aim to
discover whether the distribution of fault injection outcomes
can be captured by a subset of loop iterations.

Towards this goal, we consider a number of randomly
sampled iterations for fault injections. We present results
for different fault site sizes, defined by the total number

TABLE 7: Statistics related to loops.

Application Kernel # Thd. # Loop
Iter.

% Insn. in
Loop

HotSpot K1 9216 0 0.0%
2DCONV K1 8192 0 0.0%

NN K1 43008 0 0.0%

Gaussian

K1 512 0 0.0%
K2 4096 0 0.0%

K125 512 0 0.0%
K126 4096 0 0.0%

LUD
K45 256 0 0.0%
K46 16 120 65.79%
K44 32 120 78.75%

K-Means K1 2304 34 82.42%
K2 2304 170 87.6%

PathFinder K1 1280 20 92.84%
SYRK K1 16384 128 98.13%
2MM K1 16384 128 98.18%

GEMM K1 16384 128 98.21%
MVT K1 512 512 99.71%

of sampled iterations (num iter) ranging from 1 to 15.
Figure 6 shows the impact of num iter on the distribution
of fault injection outcomes for PathFinder, SYRK, and K-
Means K1. For K-Means K1, we show the effect of two
different random seeds for sampling the loop iterations.
The distribution of fault injection outcomes is stable after
a certain number of sampled loop iterations. Looking closer
into the application source code, we observe that: 1) several
loop conditions are controlled by constants and not vari-
ables that are changed within the loop and 2) there is no data
communication among different loop iterations. Therefore,
there is no error propagation among loop iterations, thus
sampling is sufficient for obtaining the distribution of fault
injection outcomes.

Figure 6 shows that different applications require differ-
ent numbers of sampled loop iterations to reach stability
for the percentage of masked, SDC, and other outputs. Fig-
ure 6(a) shows that PathFinder requires 3 sampled loop iter-
ations. Figure 6(b) shows that the output of SYRK becomes
stable after 8 sampled loop iterations. In both cases the trend
is clear. For K-Means K1 (Figure 6(c)), there is no clear
trend with a few sampled iterations but results stabilize
when the number of sampled loop iterations reaches 15.
To further explore the behavior of this kernel, we sample
the loop iterations of K-Means K1 using another random
seed. Figure 6(d) reports the results and shows that stability
is again achieved with 15 loop iterations, as shown in
Figure 6(c). Even with different seeds, stability occurs with
the same number of loop iterations for K-Means K1. Since
different loop iterations process similar data, changing the
seed does not make a significantly affect the application
reliability profile. In general, different benchmark kernels
need different number of loop iterations; this shows the
differences of data among different applications.

To summarize, Figure 6 suggests that randomly sam-
pling a few iterations is generally sufficient in capturing
the distribution of fault injection outcomes of application
kernels. This offers another way to further reduce the fault
sites within a thread. Therefore, we randomly add iterations
one by one, until the result is stable. For the examined
kernels, the number of iterations sampled among loops
differs from a minimum of 3, to a maximum of 15, with
an average of 7.22 iterations across all application kernels.
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(b) SYRK (Max # of Loop
Iterations=128)
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(c) K-Means K1 (Max # of
Loop Iterations=34)
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(d) K-Means K1, using a
different seed

Fig. 6: Impact of loop-wise pruning on distribution of fault
injection outcomes for (a) PathFinder, (b) SYRK, and (c)-(d)
for K-Means K1 with different random seeds.

Observation-4: Distribution of fault injection outcomes in
a kernel can be captured by a subset of iterations in the
loop. This provides an opportunity for fault site pruning
thanks to the abundance of instructions in a loop.

3.4 Bit-Wise Pruning
We explore whether we can further prune the fault site space
from the perspective of bit positions. The intuition is that not
all bit positions contribute equally to incorrect outputs. One
may assume that bit flips in higher bit positions would pro-
duce more problematic outputs as the difference between
the original value and flipped value tends to be larger.
However, this intuition does not always hold true. The error
pattern depends on application kernels and register types.

Figure 7 presents the distribution of fault injection out-
comes for two major types of registers (i.e., .u32 and .pred)
for 2DCONV and MVT. We evenly partition bit positions in
a register into 4 sections and show the distribution of fault
injection outcomes for every section. First, we notice that for
register type .u32, the intuition of higher bit sections having
more problematic outputs holds for both application ker-
nels. For MVT, the percentage of masked outputs decreases
with increasing bit positions and becomes almost invisible
in the higher two bit sections. For register type .pred that has
4 bits, we observe that for both applications, the lowest bit
position results in output errors, while the higher three bit
positions are very error resilient (they result only in masked
outputs). This is the nature of 4-bit predicate system [19]:
the highest three bits in register type .pred are used for the
overflow flag, carry flag, and sign flag, respectively, while
the lowest bit represents the zero flag. Within the context of
the applications we study in this work, only the zero flag is
used for branch conditions, so we can confidently prune the
other three bit positions within .pred.

Note that since the .pred register is not a common one,
the scope of pruning is not significant. For .u32 (see Figure 7)
there is a consistent pattern as a function of the bit position.
Therefore, we evenly select bit positions across the whole
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Fig. 7: Distribution of fault injection outcomes of different
bit position sections of two major register types (.u32 and
.pred) for (a) 2DCONV and (b) MVT.
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Fig. 8: Impact of bit-wise pruning on distribution of fault
injection outcomes for (a) 2DCONV and (b) MVT (all regis-
ters). Percentage of outputs stabilizes at 16 bits.

register, increasing the number of selected bit samples from
1 to all 32 bit positions. Note that the selected bits are sep-
arated by equal intervals. For instance, for a 32-bit register
and selecting 8 bit samples, we focus on bits in the following
positions {3, 7, 11, 15, 19, 23, 27, 31}.

Figure 8 shows the results. For 2DCONV (see Figure 8
(a)), the change in distribution of fault injection outcomes
changes as the number of sampled bits increase. This be-
havior persists in Figure 8 (b) for MVT. Overall, sampling
16 bits is sufficient and the space can be further pruned.

Observation-5: It is possible to reduce the number of fault
sites by examining only a subset of bit positions.

4 EVALUATION

In this section, we evaluate the proposed progressive prun-
ing methodology by comparing with 60K random experi-
ments (baseline case, see Section 2.3). The error margin and
confidence interval of baseline are set to 0.63% and 99.8%,
respectively. Figure 9 shows the comparison results. We ob-
serve that our pruning method produces very accurate error
resilience estimations for several benchmark kernels includ-
ing Hotspot, K-Means K2, Gaussian K2, Gaussian K126,
PathFinder, LUD K44, LUD K46, 2DCONV, GEMM, and
SYRK. For these kernels, the difference in terms of the
percentage of masked outputs comparing with baseline is
always less than 1%. For the remaining kernels, there is
no significant mismatch from the baseline. On average, the
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differences in terms of masked, SDC, and other outputs are
1.68%, 1.90%, and 1.04%, respectively.

Fig. 9: Error resilience comparison of progressive fault site
pruning techniques against the ground truth (baseline).

Next, we compare the effectiveness of the proposed
progressive feature-based pruning in terms of fault site re-
duction. Figure 10 shows the comparison results. Note that
we use log scale with a base of 10 for the y-axis. The number
of fault sites left after each pruning step is normalized
by the original exhaustive fault sites for every application
kernel for cross-kernel comparison. The height of each bar
represents the normalized number of fault sites after each
step and the decrease in bar height from the previous bar
indicates the reduction in fault site space. The last two bars
in each sub-figure report also a number that indicates the
fault site size of the fully pruned space versus the 60K
baseline case which is the closest to the ground truth. Note
that our pruning technique needs one-time offline profiling
to collect the application features needed for pruning.

We observe from Figure 10(a) that Thread-wise pruning is
most effective, as it reduces the magnitude of the number
of fault sites by up to 5 orders of magnitude and use only
a few representative threads (i.e., less than 10) per applica-
tion kernel. This is a significant reduction compared to the
original number of threads per kernel, e.g., 1 representative
out of 16384 threads for GEMM, SYRK, and 2MM, and
6 representatives out of 8192 threads for 2DCONV. Such
efficient first-order thread-wise pruning lays a substantial
base for the following steps. One important clarification is
that any later pruning is performed on the selected thread
representatives, therefore further reductions after this step
are expected to be modest.

Instruction-wise pruning exploits the commonality among
the thread representatives selected in the previous step. It
is important to clarify that kernels in the second row (see
Figure 10 (b)) are not suitable for Instruction-wise pruning,
because their representative threads do not have many
common instruction blocks. Kernels in Figure 10 (c) are
not applicable to Instruction-wise pruning as there is only
one thread group per kernel, i.e., they only have a single
representative thread. Comparing results within the first
row of Figure 10, we observe that Instruction-wise pruning is
most effective for HotSpot and PathFinder, with a reduction
of 92.81% and 92.80% instructions, respectively.

Loop-wise and Bit-wise pruning progressively contribute
to further reduction. The effectiveness of Loop-wise pruning
depends on the percentage of loop instructions in the fault
sites left by the previous step. We observe a large reduction
in K-Means K2, LUD K46 and matrix-related applications
including 2MM, GEMM, SYRK, and MVT. This matches the
fact that there is a large portion of loop instructions in these
kernels (see Table 7). On the other hand, the effectiveness
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Fig. 10: Fault site reduction comparison based on various
feature-based pruning techniques. “+” indicates that each
pruning stage is progressively built upon the pruned sites
resulted from the previous stage.

of Bit-wise pruning is relative stable, i.e., the percentage
of reduction in fault sites obtained by Bit-wise pruning is
consistent across kernels.

Summary: The proposed pruning produces comparable
distribution numbers of fault injection outcomes against a
comprehensive baseline injection of 60K experiments which
we use here as a statistically sound approximation of ground
truth. For each step of feature-based progressive fault site
pruning, we observe significant progressive reduction in the
number of fault sites, ending up with only a few hundreds
of fault sites in several kernels.

5 MULTI-BIT FAULT MODELS

In this section, we extend our progressive pruning technique
for multi-bit faults during a single run. As presented in
Table 1, the number of fault sites is already tremendous
even for single-bit fault injection. Extending the fault space
to multi-bit faults, the number can grow exponentially.
For example, the number of fault sites for single-bit fault
injection for GEMM is 6.23E+08 and this number grows
by 16 orders of magnitude of when injecting two single-bit
faults. Equation (5) shows a general fault-space calculation,
where x represents the number of faults and the inner part∑N

t=1

∑M(t)
i=1 bit(t, i) is essentially Equation (1) (i.e., the fault

space for a single-bit fault).

FaultCoverage Multi(x) = [

N∑
t=1

M(t)∑
i=1

bit(t, i)]
x (5)

We consider the following multi-bit fault models:
1) Multi-bit faults in the same word;
2) Multiple single-bit faults in different words accessed by

the same thread;
3) Multiple single-bit faults in different threads.

In the following sections, we illustrate how to extend the
proposed progressive fault site pruning technique to each
of the above models.
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Fig. 11: Impact of bit-wise pruning on 2-bit fault injection
outcomes of different instructions from (a) 2DCONV and (b)
MVT. Percentage of outputs stabilizes at 32 combinations.

5.1 Multi-bit Faults in the same word

We first examine whether the four steps of progressive
pruning can also apply when multi-bit faults occur in the
same word. To this end, we followed the steps outlined in
Sections 3.1 to 3.3 with 2-bit and 3-bit faults in the same
word. The results are remarkably similar to those with a
single bit faults and are not shown here in the interest
of brevity. We conclude that the first three pruning steps
directly apply for the single-word multi-bit model. Bit-wise
pruning, the fourth step needs to be adjusted to consider the
effect of injecting two (or three) faults within a word.

We start with considering 2-bit faults in the same
word. For a 32-bit register, there are in total

(32
2

)
=

496 different combinations of bit flips. This change dra-
matically increases the fault site space. Following the
steps outlined in Section 3.4, we aim to identify the
number of 2-bit samples that can capture the reliabil-
ity profile. For a 32-bit register, the exhaustive combi-
nation set of 2-bit faults (lexicographically ordered) is
{(0, 1), (0, 2), . . . (0, 31), (1, 2), . . . (1, 31), . . . (30, 31)}. Note
that combinations as those shown above, do include con-
secutive (burst) bit flips. Within this space, we evenly select
samples such that the selected combinations are separated
by equal bit intervals. For example, when setting the num-
ber of samples to be 16 per word, then we inject faults in the
{(0, 16), (1, 17), (2, 19), ..., (15, 31)} locations.

For each of the applications, we select a set of repre-
sentative instructions covering different operand types and
different threads to perform 2-bit fault injection on the entire
space, i.e., 496 combinations. We show the results of 4
different instructions from 2DCONV and MVT in Figure 11,
when the number of selected samples ranges from 3 to
all 496 possible combinations. Typically, after sampling 32
combinations, resilience stabilizes.

Similarly, in the case of 3-bit fault in the same word,
there are in total

(32
3

)
= 4960 different combinations. Fig-

ure 12 shows the percentage of different outputs in various
instructions using 3-bit fault in the same word model when
the number of selected samples varies from 4 to 4960. For
3-bit faults, 64 samples can capture the resilience profile.
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Fig. 12: Impact of bit-wise pruning on distribution of 3-bit
fault injection outcomes of different instructions from (a)
2DCONV and (b) MVT. Distribution stabilizes at 64 bits.

In general, when multiple bits are flipped within the
same word, the same steps can be used compared to single-
bit errors but bit-wise pruning requires more combinations
(and subsequently more experiments). In general, the num-
ber of exhaustive fault sites increases one order of magni-
tude for 2-bit faults, then another order of magnitude for
3-bit, but bit-wise pruning only doubles and triples the
number of fault sites for 2- and 3-bit, respectively (details
per benchmark are not shown in the interest of brevity).

Observation-6: Fault site pruning can be extended to
multi-bit faults in the same word model:

1) Thread-wise, instruction-wise, and loop-wise prun-
ing steps stay unchanged.

2) Bit-wise pruning requires more samples of bit posi-
tions comparing to the single-bit case.

5.2 Multiple Single-Bit Faults
Multiple Single-Bit Faults in the Same Thread: We first
state a necessary assumption to extend the result of single-
bit fault injection to the context of multiple single bit faults
in the same thread.

Assumption-1 We assume that multiple single bit errors in
a single thread are independent, i.e., they do not interact with
each other. After injecting one fault, an error may propagate
to the dynamic instructions that are executed next. Injecting
a subsequent fault to a register of an upcoming dynamic
instruction that is already affected by the previous fault
injection has very low probability to revert the register to
its original correct state.

We first estimate the thread resilience with two-bit faults,
then use the different thread resilience profiles to calculate
the kernel resilience. For a particular thread, to determine
the outcome of injecting two faults, we first select one fault
site either randomly (i.e., as in the baseline case) or by using
progressive pruning (see Section 3). If the first fault does not
cause the program to crash, then we select a second fault site
in the same thread. Assuming that the distribution of single-
bit fault injection outcomes of one thread is x% masked, y%
SDC, and z% other outputs such that x% + y% + z% =
100%, then the outcome of a two-bit fault injection can be
calculated as follows:
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(a) Outcome of injecting two single-bit faults (b) Outcome of injecting three single-bit faults

Fig. 13: Comparison of pruning against ground truth (baseline) for (a) two faults and (b) three faults in the same thread.

(a) Outcome of injecting two single-bit faults (b) Outcome of injecting three single-bit faults

Fig. 14: Comparison of pruning against ground truth (baseline) for (a) two faults and (b) three faults in different threads.

1) masked% = x%× x%,
2) SDC% = x%× y%+ y%× x%+ y%× y%,
3) other% = 1− masked%− SDC%.

Multi-bit fault injection model: For every thread, we
obtain the outcome of multi-bit fault injection recursively.
Injecting m faults can be decomposed into two steps. First,
inject m-1 faults. If m-1 faults do not cause the program
crash, then inject one more fault. Assuming that the thread
resilience profile with a single fault injection is x1% masked,
y1% SDC, and z1% other outputs and the resilience profile of
m-1 fault injection outcomes is xm−1% masked, ym−1% SDC,
and zm−1% other outputs, then the outcome of m faults is

1) masked% = xm−1%× x1%,
2) SDC% = xm−1%×y1%+ym−1%×x1%+ym−1%×y1%,
3) other% = 1− masked%− SDC%.

Multiple Single-Bit Faults in Different Threads: When
multiple single-bit faults occur in different threads, thread
communication needs to be considered.

Assumption-2 We assume that threads do not interact with
each other. Threads in the same thread block communicate
using either shuffle instructions or shared memory. The
benchmarks studied in this work do not have shuffle in-
structions. To understand the shared memory usage, we
looked into the source code of the evaluated benchmarks
(Table 1) and observe that only a few benchmarks (HotSpot,
PathFinder and some kernels from LU Decomposition) use
shared memory for thread communication. In these cases,
we are able to provide an upper bound of the error resilience
profile for the following reason: if threads communicate, the
outcome of multi-bit faults should be the same or worse as
compared to no communication.

When thread resilience is calculated, the outcome of
multi-bit fault injections in different threads is calculated as
in the case of multiple single-bit faults in the same thread.
Note that when kernel resilience is calculated, the overall
result is different because the final outcome depends on
combining the resilience of different threads.

5.2.1 Evaluation

We compare the error distribution of injecting x-bit faults
with pruning against using the random 60K method (x ∈
[1, 10]), for the two cases 1) where faults occur in the same
thread and 2) in different threads. Then, we present how
the error resilience profile of an application changes with an
increasing number of injected faults.
Accuracy: We start with comparing the outcomes obtained
using the proposed progressive fault site pruning technique
against baseline, the closest approximation to ground truth
as discussed in Section 2.1. Figure 13(a) shows the distri-
bution of two single-bit fault injection outcomes for every
benchmark kernel, when faults are injected into the same
thread. The results obtained by pruning technique are still
close to baseline, for most benchmark kernels. On average,
the differences in terms of the percentage of masked, SDC,
and other outputs are 1.52%, 2.65%, and 1.64%, respectively.
In addition to double-bit, we also present the comparison
of three single-bit fault injection outcomes obtained by the
two techniques, see Figure 13(b). Differences with baseline
start to become more visible when compared to the single-
bit case (see Figure 9) and double-bit case (see Figure 13(a)).
On average, the differences in terms of the percentage of
masked, SDC, and other outputs are 1.94%, 3.42%, and 2.58%,
respectively.

We present the distribution of two single-bit fault injec-
tion outcomes in different threads for every benchmark ker-
nel, see Figure 14(a). We observe that the pruning method
still produces accurate estimations of error resilience for
most of the benchmark kernels. On average, the differences
in terms of the percentage of masked, SDC, and other outputs
are 1.81%, 2.58%, and 2.03%, respectively.

We also present the comparison of three single-bit fault
injection outcomes obtained by the two techniques in Fig-
ure 14(b). We observe that differences with baseline start
to become more visible when compared to the single-bit
case (see Figure 9) and two bit case (see Figure 14(a)). The
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(a) masked outputs (b) SDC outputs (c) other outputs

Fig. 15: Impact of the increasing number of injected faults in the same thread on the discrepancy with baseline for (a)
masked, (b) SDC, and (c) other outputs.
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(b) SDC outputs
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Fig. 16: Impact of the increasing number of injected faults in different threads on the discrepancy with baseline for (a)
masked, (b) SDC, and (c) other outputs.

average differences in terms of the percentage of masked,
SDC, and other outputs increase to 1.89%, 3.45%, and 2.79%,
respectively.

Furthermore, we notice that for some benchmark kernels
with three fault injections (including LUD K44, LUD K45,
LUD K46, MVT, 2MM, GEMM, and SYRK), there are al-
ready almost no masked outputs (i.e., masked% ≤ 5% in
Figure 13(b)), ditto for Figure 14(b)). For these kernels, it
is clear that there is no need to inject more faults to them,
they clearly do not have any resilience to more faults as all
outcomes are SDC or other.

Figures 15 and 16 show that generally the difference with
baseline increases as we inject more faults into the same
thread or different threads. For most kernels, the difference
is always within ±5% for all three types of outputs when
injecting multiple faults. For HotSpot, the difference in
terms of SDC and other outputs starts exceeding ±5% after
injecting 6 and 5 faults, respectively. The difference of the
percentage of masked outputs for HotSpot is always less than
2%, which shows that the pruning method is still able to
provide a good estimation of the HotSpot’s resilience even
with multiple faults.

We summarize how the average discrepancy (across all
kernels) changes over an increasing number of faults in
Figures 17 and 18, for multiple single-bit fault injection in
the same thread and different threads, respectively. For the
fault model of injecting in the same thread, the average
differences of masked, SDC, and other outputs for 10 faults
are all below 6%: 2.64%, 5.64%, and 5.46%, respectively.
For injecting faults in different threads, the average values
increase by injecting more faults, end up to be as high as
2.83%, 7.19%, and 5.28% for masked, SDC, and other outputs,
respectively, for 10 faults. If we exclude Gaussian K125, the
most challenging kernel, and re-calculate the mean values,
the average differences are less than 2% for masked outputs
and less than 6% for SDC and other outputs.

Observation-7: The difference between the distribution
of fault injection outcomes obtained by the proposed
fault site pruning technique and baseline is acceptable, i.e.,
within ±3% for up to 3-bit fault injection and within ±6%
for up to 10-bit fault injection.

(a) All kernels (b) All but Gaussian K125

Fig. 17: Mean error versus baseline for multiple single bit
faults in the same thread calculated (a) across all kernels
and (b) across all kernels but excluding Gaussian K125.
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(b) All but Gaussian K125
Fig. 18: Mean error versus baseline for multiple single bit
faults in different threads calculated (a) across all kernels
and (b) across all kernels but excluding Gaussian K125.
Impact of multiple single-bit faults: So far, we have shown
that the distribution of fault injection outcomes obtained
through the proposed progressive fault site pruning tech-
nique is close to the distribution achieved by baseline under
the context of multiple single-bit fault injection. Therefore, in
this section, we present how error resilience characteristics
change over increasing number of faults using the result
given by the proposed pruning method.

Figure 19 presents the distribution of fault injection
outcomes of four representative benchmark kernels for mul-
tiple single-bit faults in the same thread. The percentage
of masked outputs reduces significantly as we inject more
faults and ends up at 0% within 10 injected faults for most
benchmark kernels, see Figure 19 (a) for MVT. There are
three exceptions: HotSpot (see Figure 19 (b)), K-Means K2
(see Figure 19 (c)) and PathFinder K1. These kernels are
more error resilient than the others. Another exception is
Gaussian K126 (see Figure 19 (d)), whose percentage of
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(a) MVT (b) HotSpot

(c) K-Means K2 (d) Gaussian K126

Fig. 19: Error resilience changes over increasing number of
injected faults in the same thread for representative bench-
mark kernels.
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(a) MVT
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(b) HotSpot
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(c) K-Means K2
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Fig. 20: Error resilience changes over increasing number of
injected faults for representative benchmark kernels.

masked outputs is still over 99% with 10 faults injected,
implying that this kernel is even more error resilient.

The observations for injecting faults into different
threads are similar, see Figure 20 with the exception of
HotSpot: the percentage of masked outputs is close to 0%
for 10 faults.

Observation-8: For the majority of benchmark kernels,
the percentage of masked outputs stabilizes at 0% with 10
injected faults.

6 RELATED WORK

High-level Reliability Analysis. Simulation-based analy-
sis is employed widely in characterizing critical hardware
structures for the purpose of finding vulnerabilities intro-
duced by soft errors. Prior work [20], [21], [22] performed
architectural vulnerability analysis (AVF) by performing
exhaustive fault injection experiments. Faults are injected at
various levels (e.g., application- or micro-architecture-level)
and the effects of bit flips are measured by analyzing the ap-
plication output. Application-level fault injection techniques
are widely used in evaluating error-resilience characteristics
for both CPU [23], [24] and GPU applications [25]. They are
generally fast and still can provide detailed information. An-
other option is performing neutron-beam experiments [2],
which is not always feasible. In this paper, we follow the
process of studying reliability via fault injection, at PTXPlus-

level, which is much faster and feasible than beam injection
and is also reasonably accurate [15].
Fault Analysis. Although much work has been done on
fault analysis and fault prediction models in real sys-
tems [26], [27], [28], [29], [30], [31], there are only a limited
number of fault injection models designed specifically for
GPUs. Fang et al. [16] proposed GPU-Qin to understand
how faults affect application output in GPUs. A GPU debug-
ging tool cuda-gdb [32] is leveraged by GPU-Qin to inject sin-
gle bit errors into the destination operands. Similarly, Hari et
al. [8] developed a fault injection tool, called SASSIFI, which
injects different kinds of faults into destination register
values, destination register indices and store addresses, and
register files. The aforementioned studies adopt the com-
monly used single-bit fault model. Sangchoolie et al. [33]
consider the impact of multi-bit faults for CPU applications.
Here, we propose a new single-bit fault model for GPGPU
applications and extend it to multi-bit fault models.
Fault-site Pruning. Within the CPU context, Relyzer [34]
and MeRLiN [18] group fault sites into equivalence classes
and select one or more pilots per class for fault injection.
Directly transferring such techniques to GPU applications
is not straightforward because GPU applications spawn
hundreds to thousands of threads, leading to an enormous
fault site space. The work presented here, extends the
methodology in [35] for multi-bit faults.
Input-dependent resilience analysis. A common limitation
of the fault injection works in both the GPU and CPU
domains (included the work presented here) is that they are
input-dependent, i.e., fault injection experiments have to be
redone for different inputs. Minotaur [36] and vTrivent [37]
leverage techniques from the software engineering and
compiler domains, respectively, for reliability analysis of
CPU applications with multiple inputs. To the best of our
knowledge, there is no related work in the literature on this
topic for GPGPU applications and is subject of our future
work.

7 CONCLUSIONS

We demonstrate that fault sites in GPUs are very large and
hence it is impractical to inject faults at every site to gain a
comprehensive understanding of the GPGPU application er-
ror resilience. To address this, we present a progressive fault
site reduction methodology based on GPGPU application-
specific features. The key insight stems from the fact that
while GPGPU applications spawn a lot of threads, many of
them execute the same set of instructions. Therefore, several
fault sites are redundant and can be pruned by a careful
analysis of faults across threads, instructions, loop iterations
within the same thread, and register bit positions. Across
a set of 10 GPGPU applications (16 kernels in total) from
the Rodinia and Polybench suites, we achieve a significant
reduction in the number of fault-injection experiments (up
to seven orders of magnitude) needed for a remarkably
accurate GPU reliability assessment. In addition, we show
how the proposed fault site pruning can be used in the more
challenging case of multi-bit fault injections.
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