
Typhoon: Enabling GPGPU Application Resilience
Estimation with Different Input Types

Lishan Yang
William & Mary

Williamsburg, VA
lyang11@email.wm.edu

Abstract—Graphics Processing Units (GPUs) are embraced in
various domains because of their massive parallelism to process
large amounts of data. Reliability concerns are raised as critical
applications such as self-driving cars are deployed on GPUs.
While different techniques are proposed to measure the resilience
of a GPGPU application on one input, the reliability assessment
has to be repeated for every different input. In this paper, we
propose a methodology, Typhoon, which uses the norm of the
input matrix to project application resilience. We observe an
approximately monotonic trend between resilience and the norm
of the input matrix. By sampling several selected input, the trend
is captured and used to estimate the resilience of any new input.

I. INTRODUCTION

The growing demand for large scale and fast computa-
tion embraces massive parallelism and multicore architecture,
which contributes to the popularity of Graphics Processing
Units (GPUs). General Purpose GPUs (GPGPUs) are widely
used in different domains such as autonomous vehicles [1],
high performance computing (HPC) [2], [3], [4], [5], [6], [7],
deep learning [8], and network functions [9]. A large number
of GPGPU applications are critical to errors, such as hurricane
prediction and self-driving cars. Similar to CPU and other
customized accelerators, GPUs are susceptible to transient
faults [10], [11], [12], [13], [14]. This raised the importance of
GPU reliability research, including GPU application resilience
analysis and error detection/protection mechanisms.

One of the common ways of assessing GPGPU application
resilience is to perform a fault injection campaign. For each
application fault injection run, one or multiple bits are flipped,
and then the final output of the application is compared
with the fault-free execution. Because of the large number
of threads executing in parallel, the fault site space of a
GPGPU application can reach the order of billions [15].
Statistical sampling is used to reduce the required number
of experiments [16], [17]: the results of 1, 000 experiments
can achieve 95% confidence intervals and ±3% error margins.
Even with the state-of-art fault site pruning method [15]
to reduce the sampling fault site space, several hundreds
to thousands of experiments are necessary to evaluate the
application resilience. All of the above methods focus on
only one input. Since the input of real world applications
cannot always stay the same, applying resilience estimation to
real world applications is challenging. If input value changes,
the resilience may also change, and the estimation process

needs to be repeated. The state-of-art resilience estimation
technique [18] considers different inputs, but only with the
same input type (the actual input that the application admits,
such as integers or floats and their range of values) and scaling
up the input size (the actual number of input elements).

When considering different input types, the problem is
much more complicated than considering different input sizes:
when input size changes, only the thread structure of the
application scales accordingly, while analyzing different input
types should consider different data type, range of values,
distributions, and the sign of the value. In this work, we
propose Typhoon, a methodology to estimate the GPGPU
application resilience considering different input types. By
examining various inputs and their resilience, we find the
norm of the input matrix is a good abstraction of the input
characteristics. The relationship between resilience and norm
is approximately monotonic. Therefore, fault injection cam-
paigns targeting several selected input types covering different
norm values can capture this approximately monotonic trend.
For any new input type, its application resilience can be easily
retrieved from the captured trend.

In summary, we make the following research contributions:
• We identify the usefulness of input matrix norm when

dealing with different input types.
• We propose a methodology to estimate GPGPU applica-

tion resilience with different input types.

II. BACKGROUND AND FAULT MODEL

A. GPU structure and input format

Baseline GPU Architecture. A GPU has a large number of
cores (streaming-multiprocessors or SMs in NVIDIA terminol-
ogy [19]), with private L1 cache, software-managed scratchpad
memory, and a register file in each core. Cores are connected
to global memory through an interconnection network. The L2
cache is shared within the same memory channel.

GPGPU Execution Model. GPGPU applications execute
thousands of threads in parallel over large amounts of data.
The logic of a GPGPU application is organized as a sequence
of kernels (GPGPU functions). Each kernel is partitioned into
groups of threads, known as thread blocks or Cooperative
Thread Arrays (CTAs) in NVIDIA terminology. Threads inside
one CTA are grouped into warps (32 individual threads per
warp) as the smallest scheduling unit.



Input Format and Benchmarks. The input of GPGPU
applications can be matrices, vectors, images, and graphs, and
can be represented in float points, integers, or booleans. In
this paper, we focus on integers. We select four benchmarks
from Polybench [20]: MVT (matrix-vector multiplication),
2DCONV (2D convolution), GEMM (general matrix multi-
plication), and 3MM (three matrices multiplication).

B. Fault Model

The fault model assumes that register files and other compo-
nents such as caches and memory are protected by ECC, and
we only consider commonly occurring computation-related
errors due to transient single-bit faults (also known as soft
errors) in components that cannot be protected by ECC, such
as ALUs and LSUs, which leads to wrong outputs in destina-
tion registers. This is standard experimental methodology for
GPGPU reliability studies [16], [17], [21], [15], [22].

For each fault injection run, we flip a bit at a destination
register identified by its instruction id and a bit position. This is
commonly used in GPU application resilience estimation [17],
[23], [16], [15], [18]. We consider single-bit fault model, i.e.,
in each fault injection run, there is only one bit flip.

We use NVBit-FI [24] to perform fault injection experi-
ments. NVBit-FI is an architecture-level fault injection tool
built on top of NVBit [25] (a dynamic binary instrumentation
library of NVIDIA GPUs).

There are three possible outcomes for one fault injection
run: 1) masked outcome: the application output is correct;
2) silent data corruption (SDC) outcome: the output is
incorrect, but the execution is successful without any error;
3) other outcome: a crash or hang is observed.

For each application input, we perform 1, 000 fault injection
experiments with random sampling to achieve 95% confidence
intervals and ±3% error margins. We calculate the percentage
of masked, SDC, and other outcomes of fault injection
experiments to get the application resilience profile. In this
work, we focus on the benign outcomes, i.e., the percentage
of masked outcomes.

III. METHODOLOGY AND PRELIMINARY RESULTS

We start with a motivation example with MVT. We generate
15 different inputs with Binomial and Equilikely distributions,
as listed in Table I. The Frobenius norm [26] of the input
matrix A in the third column is calculated using Eq. 1:

‖ A ‖Frob.norm=
√

[Σi,jabs(ai,j)]2, (1)
where function abs(ai,j) calculates the absolute value of
matrix element ai,j .

We plot the relationship of resilience (as a function of the
percentage of masked outcomes obtained from fault injection
experiments) to the norm value of input matrices, see the solid
line in Fig. 1(a). There is an approximate monotonic trend: as
the norm increases, the percentage of Masked outputs also
grows larger. There is no distinct difference among different
distributions and parameters, and all the characteristics of the
input matrix are summarized using its norm.

TABLE I
INPUT EXAMINED IN MVT.

Distribution Parameters Frob. Norm
p = 0.1, n = 10 356.00
p = 0.1, n = 100 2692.62
p = 0.1, n = 1000 25907.79
p = 0.1, n = 10000 258096.24

Binomial p = 0.5, n = 10 1351.48

P (x) =
(N
x

)
px(1− p)n−x p = 0.5, n = 100 12965.70

p = 0.5, n = 1000 129053.56
p = 0.5, n = 10000 1289958.94
p = 0.9, n = 10 2333.20
p = 0.9, n = 100 23229.20
p = 0.9, n = 1000 232204.45
p = 0.9, n = 10000 2321934.89

Equilikely a = 10, b = 20 3811.68

P (x) = x−a
b−a

a = 100, b = 110 26968.00
a = 1000, b = 1010 259151.83

0.0 0.2 0.4 0.6 0.8 1.0
Norm of Input Matrix (Normalized)

0.2

0.4

0.6

0.8

Pc
t. 

of
 M

as
ke

d MVT
2DCONV

(a) MVT and 2DCONV.

0.0 0.2 0.4 0.6 0.8 1.0
Norm of Input Matrix (Normalized)

0.10
0.15
0.20
0.25
0.30
0.35

Pc
t. 

of
 M

as
ke

d GEMM
3MM

(b) GEMM and 3MM.
Fig. 1. Resilience as a function of norm.

Fig. 2. Typhoon workflow.

Similar observations are also shown in other benchmarks
from Polybench in Fig. 1. The approximate monotonic trends
for different applications are different: the trends of MVT and
2DCONV are both monotonous increases, while in GEMM
and 3MM they are monotonous decreases. Note that the
oscillations observed in 2DCONV and GEMM are within the
error margin.

We summarize the workflow of Typhoon in Fig 2. For the
target application to be estimated, the first step is to generate
example inputs covering the desired range of matrix norm.
In step 2, fault injection experiments are conducted to obtain
the resilience of the selected example inputs. Meanwhile, the
Frobenius norm of the input matrices is calculated in step 3.
With the resilience and norm values, we can determine the
approximately monotonic trend of the target application, see
step 4. Given a new input, the norm of the input matrix is
calculated, and the estimated resilience is retrieved from the
derived function of norm-resilience.

Typhoon drives the monotonic trend between resilience and
input matrix norm, which is used to estimate the resilience
of new inputs. Here we only consider benchmarks performing
matrix operations and integers. Other facts such as floating
points or negative values, mixes of different distributions, and
other types of applications are subject of ongoing work.

2



REFERENCES

[1] S. S. Banerjee, S. Jha, J. Cyriac, Z. T. Kalbarczyk, and R. K. Iyer,
“Hands off the wheel in autonomous vehicles?: A systems perspective
on over a million miles of field data,” in 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
pp. 586–597, IEEE, 2018.

[2] A. Eklund, P. Dufort, D. Forsberg, and S. M. LaConte, “Medical
image processing on the GPU–past, present and future,” Medical image
analysis, vol. 17, no. 8, pp. 1073–1094, 2013.

[3] S. S. Stone, J. P. Haldar, S. C. Tsao, W. mei W. Hwu, B. P. Sutton, and
Z.-P. Liang, “Accelerating advanced MRI reconstructions on GPUs,” J.
Parallel Distrib. Comput., vol. 68, no. 10, pp. 1307–1318, 2008.

[4] R. Foster, “How to harness big data for improving public health,”
Government Health IT, 2012.

[5] I. Schmerken, “Wall street accelerates options analysis with GPU
technology,” Wall Street Technology, vol. 11, 2009.

[6] NVIDIA, “Computational finance.”
[7] NVIDIA, “Researchers deploy GPUs to build world’s largest artificial

neural network.”
[8] Z. Chen, G. Li, K. Pattabiraman, and N. DeBardeleben, “Binfi: an

efficient fault injector for safety-critical machine learning systems,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–23, 2019.

[9] Q. Gong, P. DeMar, and W. Wu, “Deep packet/flow analysis using gpus,”
tech. rep., 2017.

[10] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers, “A large-
scale study of soft-errors on gpus in the field,” in High Performance
Computer Architecture (HPCA), 2016 IEEE International Symposium
on, pp. 519–530, IEEE, 2016.

[11] B. Nie, J. Xue, S. Gupta, C. Engelmann, E. Smirni, and D. Tiwari,
“Characterizing temperature, power, and soft-error behaviors in data
center systems: Insights, challenges, and opportunities,” in MASCOTS
2017, pp. 22–31.

[12] B. Nie, J. Xue, S. Gupta, T. Patel, C. Engelmann, E. Smirni, and
D. Tiwari, “Machine learning models for GPU error prediction in a
large scale HPC system,” in DSN 2018, pp. 95–106.

[13] S. Jha, S. S. Banerjee, T. Tsai, S. K. S. Hari, M. B. Sullivan, Z. T.
Kalbarczyk, S. W. Keckler, and R. K. Iyer, “Ml-based fault injection
for autonomous vehicles: A case for bayesian fault injection,” in 49th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2019, Portland, OR, USA, June 24-27, 2019, pp. 112–
124, IEEE, 2019.

[14] A. Mahmoud, N. Aggarwal, A. Nobbe, J. Vicarte, S. Adve, C. Fletcher,
I. Frosio, and S. Hari, “Pytorchfi: A runtime perturbation tool for dnns,”
pp. 25–31, 06 2020.

[15] B. Nie, L. Yang, A. Jog, and E. Smirni, “Fault site pruning for
practical reliability analysis of gpgpu applications,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pp. 749–761, IEEE, 2018.

[16] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “GPU-Qin: A
methodology for evaluating the error resilience of GPGPU applications,”
in Performance Analysis of Systems and Software (ISPASS), 2014 IEEE
International Symposium on, pp. 221–230, IEEE, 2014.

[17] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
“SASSIFI: Evaluating resilience of GPU applications,” in Proceedings
of the Workshop on Silicon Errors in Logic-System Effects, 2015.

[18] L. Yang, B. Nie, A. Jog, and E. Smirni, “Sugar: Speeding up gpgpu
application resilience estimation with input sizing,” Proc. ACM Meas.
Anal. Comput. Syst. (Sigmetrics 2021), to appear, 2021.

[19] “NVIDIA Fermi Architecture Whitepaper.”
[20] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,

“Auto-tuning a high-level language targeted to gpu codes,” in Innovative
Parallel Computing (InPar), 2012, pp. 1–10, IEEE, 2012.

[21] G. Li, K. Pattabiraman, C.-Y. Cher, and P. Bose, “Understanding error
propagation in GPGPU applications,” in High Performance Computing,
Networking, Storage and Analysis, SC16: International Conference for,
pp. 240–251, IEEE, 2016.

[22] B. Sangchoolie, K. Pattabiraman, and J. Karlsson, “One bit is (not)
enough: An empirical study of the impact of single and multiple bit-
flip errors,” in 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2017, Denver, CO, USA, June
26-29, 2017, pp. 97–108, IEEE Computer Society, 2017.

[23] S. Tselonis and D. Gizopoulos, “Gufi: A framework for gpus reliability
assessment,” in Performance Analysis of Systems and Software (ISPASS),
2016 IEEE International Symposium on, pp. 90–100, IEEE, 2016.

[24] “Nvbitfi.” https://github.com/NVlabs/nvbitfi.
[25] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “Nvbit: A

dynamic binary instrumentation framework for nvidia gpus,” in Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 372–383, 2019.

[26] G. H. Golub and C. F. V. Loan, Matrix Computations. Johns Hopkins
University Press, Baltimore, MD, 1985. pg. 15.

3


